Truth-Tables (Pt. I)

Activity!

The
Replacement Method

Steps:

1. Copy the formula, substituting the letter constants with the relevant truth-values.
2. Calculate the operators with the smallest scopes.
3. Calculate the main operator.

Use the replacement method to calculate the truth-values of the following: (Key: R and L are true; M and 0 are false.) a. $\sim[(0 \vee M) \supset(R \equiv M)]$
b. $[(R \& L) \vee(R \& M)] \& \sim(L \& M)$
c. $(([R \equiv L] \&[M \equiv 0]) \vee[M \supset R]) \supset 0$

Question:

How do we know these argument forms are always valid?

Storytime!

But subsequent research by Irving Anellis (2012) showed that "an unpublished manuscript identified as composed by [Charles] Peirce in 1893 includes a truth table matrix that is equivalent to the matrix for material implication discovered by John Shosky.

$$
1127
$$

Truth-table Analysis - ○ ○

Steps

\#1: Write in the following:

- the sentence constants (in alphabetical order) the TL-symbolization of the sentence

A
B
(A
\&
B)

三
B

\#2: Draw the table.

Note: There should be enough columns for the truth-value assignments and all the sentence constants and connectives of the formula in TL; there should be enough rows for all the possible truth-values of the letter constants.

Rule: If there is one letter constant, there should be three rows; if there are two constants, there should be 5 rows; 3 constants, 9 rows; etc.
(In other words, $\mathrm{N}=2^{x}+1$, where N equals the number of rows and x equals the number of sentence constants.)

A
B
(A
\&
B)

三
B

A	B	(A	$\&$	B)	\equiv	\sim	B

A	B	(A	$\&$	B)	\equiv	\sim	B

A	B	(A	$\&$	B)	\equiv	\sim	B

\#3: Fill in all possible truth-value assignments. Rule: If there are two letter constants, input T-T-F-F for the first column then T-F-T-F for the second; if there are three letter constants, input T-T-T-T-F-F-F-F for the first column, then T-T-F-F-T-T-F-F for the second, then T-F-T-F-T-F-T-F for the third.

A	B	(A	$\&$	B)	\equiv	\sim	B

A	B	(A	$\&$	B)	\equiv	\sim	B
T	T						
T	F						
F	T						
F	F						

A	B	C	(A	\&	C)	三	~	B
T	T	T						
T	T	F						
T	F	T						
T	F	F						
F	T	T						
F	T	F						
F	F	T						
F	F	F						

A	B	(A	$\&$	B)	\equiv	\sim	B
T	T						
T	F						
F	T						
F	F						

A	B	(A	$\&$	B)	\equiv	\sim	B
T	T	T					
T	F	T					
F	T	F					
F	F	F					

A	B	A	$\&$	$\mathrm{~B})$	\equiv	\sim	B
T	T	T		T			T
T	F	T		F			F
F	T	F		T			T
F	F	F		F			F

\#4: Find the main connective.

A	B	(A	$\&$	$\mathrm{~B})$	\equiv	\sim	B
T	T	T		T			T
T	F	T		F			F
F	T	F		T			T
F	F	F		F			F

\#5: Calculate the values under the connectives with the smallest scope.

Note: If there is a tie for which is the smallest scope, compute the leftmost operator first.

A	B	(A	$\&$	$\mathrm{~B})$	\equiv	\sim	B
T	T	T		T			T
T	F	T		F			F
F	T	F		T			T
F	F	F		F			F

A	B	(A	$\&$	$\mathrm{~B})$	\equiv	\sim	B
T	T	T		T		F	T
T	F	T		F		T	F
F	T	F		T		F	T
F	F	F		F		T	F

A	B	(A	$\&$	$\mathrm{~B})$	\equiv	\sim	B
T	T	T	T	T		F	T
T	F	T	F	F		T	F
F	T	F	F	T		F	T
F	F	F	F	F		T	F

\#6: Calculate the value of the main connective, i.e., the final column.

A	B	(A	$\&$	$\mathrm{~B})$	\equiv	\sim	B
T	T	T	T	T		F	T
T	F	T	F	F		T	F
F	T	F	F	T		F	T
F	F	F	F	F		T	F

A	B	(A	$\&$	$\mathrm{~B})$	\equiv	\sim	B
T	T	F	T	F		F	T
T	F	F	F	F		T	F
F	T	F	F	T		F	T
F	F	F	F	F		T	F

A	B	(A	$\&$	$\mathrm{~B})$	\equiv	\sim	B
T	T	F	T	F	F	F	T
T	F	F	F	F	F	T	F
F	T	F	F	$\mathrm{T})$	T	F	T
F	F	F	F	F	F	T	F

A	B	(A	$\&$	$\mathrm{~B})$	\equiv	\sim	B
T	T	T	T	T	F	F	T
T	F	T	F	F	F	T	F
F	T	F	F	T	T	F	T
F	F	F	F	F	F	T	F

\#7: Review your work.

Construct a truth-table to calculate the truth-values of the following formulas:
a. $\sim[(0 \vee P) \supset(O \equiv P)]$
b. $[K \supset C] \supset A$
c. $(T \& L) v(T \& M)$

Truth-table Analysis - ○ ○

Steps

\#1: Follow all steps from SENTENCE EDITION.

Rule for Validity Test:
If there is any row on the truth-table that contains all true premises (or premise), but a false conclusion, then the argument is invalid. If the table contains no row showing true premise(s) and a false conclusion, the argument is valid.
©

$$
\begin{array}{llllllll}
P & Q & P & \supset & Q & P & / & Q
\end{array}
$$

P1

P	Q	P	\supset	Q		P	$/$	Q

P	Q	P	J	Q		P	$/$	Q
T	T							
T	F							
F	T							
F	F							

P	Q	P	\supset	Q		P	$/$	Q
T	T	T				T		
T	F	T				T		
F	T	F				F		
F	F	F			F			

P	Q	P	\supset	Q		P	$/$	Q
T	T	T		T		T		T
T	F	T		F		T		F
F	T	F		T		F		T
F	F	F		F		F		F

P	Q	P	\supset	Q		P	$/$	Q
T	T	T		T		T		T
T	F	T		F		T		F
F	T	F		T	F		T	
F	F	F		F	F		F	
\uparrow							\uparrow	\uparrow

P	Q	P	\supset	Q		P	$/$	Q
T	T	T	T	T		T		T
T	F	T	F	F		T		F
F	T	F	T	T	F		T	
F	F	F	T	F	F		F	
\uparrow							\uparrow	\uparrow

P	Q	P	\supset	Q		P	$/$	Q
T	T	T	T	T		T		T
T	F	T	F	F	T		F	
F	T	R	T	T	F		T	
F	F	F	T	F	F	F		
\uparrow								

Rule for Validity Test:
If there is any row on the truth-table that contains all true premises (or premise), but a false conclusion, then the argument is invalid. If the table contains no row showing true premise(s) and a false conclusion, the argument is valid.

P	Q	P	\supset	Q		P	$/$	Q
T	T	T	T	T		T		T
T	F	T	F	F	T		F	
F	T	R	T	T	F		T	
F	F	F	T	F	F	F		
\uparrow								

Use truth-table analysis to assess the following for validity...

1. $\mathrm{P} \supset \mathrm{Q} ; \sim \mathrm{P} ; \therefore \sim \mathrm{Q}$
2. $\mathrm{P} \supset \mathrm{Q} ; \mathrm{Q} ; \therefore \mathrm{P}$
3. $\sim(P \& Q) ; P ; \therefore \sim Q$
4. $\mathrm{P} \supset \mathrm{Q} ; \mathrm{P} ; \therefore \mathrm{Q}$
5. $\mathrm{PvQ} ; \sim \mathrm{P} ; \therefore \mathrm{Q}$
6. $\mathrm{P} \supset \mathrm{Q} ; \sim \mathrm{Q} ; \therefore \sim \mathrm{P}$
