Replacement Rules (Pt. I)

Replacement Rules: Important Concepts

Fundamental Concepts in SD:

Non-subderivational Rules • &I • &E • $\supset E$ • $\equiv E$

• VI

Subderivational Rules • \supset I • \sim E • \sim I • \equiv I • \bigvee E

SD+ is a derivation system that includes all the derivation rules from SD, but also **replacement rules** (which can radically shorten the length of a proof).

Derivable in SD+

A sentence **P** of TL is derivable in SD+ from a set Γ of sentences of TL if and only if there is a derivation in SD+ in which all the primary assumptions are members of Γ and **P** occurs within the scope of only those assumptions.

Most Important Replacement Rules

De Morgan's Rule (DM)

Where **P** and **Q** are variables ranging over declarative sentences...

Anywhere in a proof, \sim (**P** & **Q**) may replace or be replaced by ~P v ~Q; \sim (**P** v **Q**) may replace or be replaced by ~P & ~Q.

~	(P	&	Q)	~	Р	V	~	Q
F	Т	Т	Т	F	Т	F	F	Т
Т	Т	F	F	F	Т	Т	Т	F
Т	F	F	Т	Т	F	Т	F	Т
Т	F	F	F	Т	F	Т	Т	F

~	(P	&	Q)	~	Р	V	~	Q
F	Т	Т	Т	F	Т	F	F	Т
Т	Т	F	F	F	Т	Т	Т	F
Т	F	F	Т	Т	F	Т	F	Т
Т	F	F	F	Т	F	Т	Т	F

Modus Tollens (MT)

Where **P** and **Q** are variables ranging over declarative sentences...

Given: P ⊃ Q
Given: ~Q
You may infer: ~P

Modus Tollens can take many forms...

- A ⊃ B; ~B; ∴ ~A
- $J \supset L; ~L; ... ~J$
- ~| ⊃ ~0; ~~0; ∴ ~~|

$(A \lor B) \supset (C \& D); \sim (C \& D); : \sim (A \lor B)$

Disjunctive Syllogism (DS)

Where **P** and **Q** are variables ranging over declarative sentences... Given: P v Q
Given: ~P or (~Q)
You may infer: Q (or P)

Again... Disjunctive Syllogisms can take many forms, and the order the premises are listed in does not matter.

Hypothetical Syllogism (HS)

Where **P** and **Q** are variables ranging over declarative sentences...

Given: P ⊃ Q
Given: Q ⊃ R
Inference: P ⊃ R

Again... Hypothetical Syllogisms can take many forms, and the order the premises are listed in does not matter.

Implication (Imp)

Where **P** and **Q** are variables ranging over declarative sentences... Anywhere in a proof, $P \supset Q$ may replace or be replaced by $\sim P \lor Q$.

Double Negation (DN)

Where **P** is a variable ranging over declarative sentences...

Anywhere in a proof, **P** may replace or be replaced by **~~P** (or replace **~~P** with **P**).

This!

