What's a UD?

The universe of discourse (UD) allows you to restrict the domain of your discourse;
i.e., to not talk about EVERYTHING.
"Some people are students"
$(\exists x)(P x \& S x)$
Or
UD: Set of all people $(\exists x)(S x)$

For example...

The universe of discourse (UD) allows you to restrict the domain of your discourse;
i.e., to not talk about EVERYTHING. ( $\exists x)(\exists y)(K x y)$
For example...
"Someone knows someone."
$(\exists x)(P x \&(\exists y)(P y \&$ Kxy))

Or
UD: Set of all people

When do we use a different variable?

UD: Set of all people
You use a
different variable
if you have
overlapping scopes.
For example...

$$
(\exists x)(\exists y)(K x y)
$$

Compare with:
"Sam knows someone, and
Alex knows someone."
UD: Set of all people $(\exists x)(K s x) \&(\exists x)(K a x)$

What are we going to use

$$
\begin{gathered}
\text { the A-, E-, I-, and } \\
\text { O-type sentences for? }
\end{gathered}
$$



The universal affirmative (A): $(\forall \mathrm{x})(\mathrm{Fx} \supset \mathrm{Gx})$
The universal negative (E): $(\forall \mathrm{x})(\mathrm{Fx} \supset \sim \mathrm{Gx})$
The particular affirmative (I): ( $\exists \mathrm{x})(\mathrm{Fx} \& \mathrm{Gx})$
The particular negative $(\mathrm{O}):(\exists \mathrm{x})(\mathrm{Fx} \& \sim \mathrm{Gx})$

# Universal <br> Affirmative 

All $\qquad$ are $\qquad$

1. Whales are mammals.
2. Any whale is a mammal.
3. A whale is a mammal.
4. Every whale is a mammal.

$$
(\forall x)(W x \supset M x)
$$

$$
20.2
$$

## Universal Negative

No $\qquad$ are $\qquad$ .

1. Whales are not reptiles.
2. A whale is not a reptile.
3. Every whale is a non-reptile.

$$
(\forall x)(W x \quad \sim \sim R x)
$$



Some trees are poplars.

$$
(\exists x)(T x \& P x)
$$

## Question:

Why not ( $\exists \mathrm{x})(\mathrm{Tx}$ つ Px$)$ ?


## Existential Negative



Some students are not Republicans.

$$
(\exists x)(S x \& \sim R x)
$$



The universal affirmative (A): $(\forall \mathrm{x})(\mathrm{Fx} \supset \mathrm{Gx})$ The universal negative (E): $(\forall \mathrm{x})(\mathrm{Fx} \supset \sim \mathrm{Gx})$ The particular affirmative (I): ( $\exists \mathrm{x})$ (Fx \& Gx) The particular negative (O): ( $\exists \mathrm{x})$ (Fx \& $\sim \mathrm{Gx}$ )
"Everything is good" is logically equivalent to "There is nothing that is non-good."
Hence, it can be symbolized in two ways:

$$
\begin{aligned}
& \forall(x) G x \sim \text { true A-sentence } \\
& \quad \text { or } \\
& \sim \exists(x) \sim G x
\end{aligned}
$$



## "Everything is good" is logically

 equivalent to "There is nothing that is non-good."Hence, it can be symbolized in two ways:
$\nabla(x)_{G x}$ ~true A-sentence
false $O$-sentence $>\sim \underset{\sim}{\sim} \stackrel{\text { or }}{ }(x) \sim G x$

Why do we sometimes translate "and" with a wedge?

Translate the
following:
"Bats and rats are mammals"
$(\forall x)((B x \vee R x) \supset M x)$


# Any trick questions? 

## Paraphrase:

For all x, if x was hired, then $x$ was a

Translate the following:
"Only teachers with certification were hired"
teacher and $x$ had a certification.
$(\forall x)(H x)$ (Tx \& Cf)


Paraphrase: For all x, if x was hired, then $x$ was a teacher and $x$ had a certification. $(\forall x)((T x \& C x)) \supset$ Hx)
WRONG

