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 10.1 THE DERIVATION SYSTEM PD

Chapter 10
PREDICATE LOGIC:
DERIVATIONS

In this chapter we develop natural deduction systems for predicate logic. The 
fi rst system, PD (for predicate derivations), contains exactly two rules for each 
logical operator, just as SD contains exactly two rules for each sentential con-
nective. It provides syntactic methods for evaluating sentences and sets of sen-
tences of PL, just as the natural deduction system SD provides methods for 
evaluating sentences and sets of sentences of SL. PD is both complete and 
sound: for any set � of sentences of PL and any sentence P of PL

�  P if and only if � � P in PD.

That is, a sentence P of PL is quantifi cationally entailed by a set � of sentences 
of PL if and only if P is derivable from � in PD. We prove this in Chapter 11.

The derivation rules of PD include all the derivation rules of SD, with 
the understanding that they apply to sentences of PL. So the following is a 
derivation in PD:

Derive: ∼ (∀x)Hx

1 (∀x)Hx ⊃ ∼ (∃y)Py Assumption
2 (∃y)Py Assumption

3  (∀x)Hx A / ∼ I

4  ∼ (∃y)Py 1, 3 ⊃E
5  (∃y)Py 2 R
6 ∼ (∀x)Hx 3–5 ∼ I
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10.1 THE DERIVATION SYSTEM PD  475

The strategies we used with SD are also useful when working in PD. Those 
strategies are based on careful analyses of the goal or goals of a derivation—the 
structure of the sentence or sentences to be derived—and the structure of acces-
sible sentences. They can be summarized thus:

• If the current goal sentence can be obtained by Reiteration, use that 
rule, otherwise

• If the current goal sentence can be obtained by using a non-subderivation 
rule, or a series of such rules, do so; otherwise

• Try to obtain the goal sentence by using an appropriate subderivation 
rule.

• When using a negation rule, try to use an already accessible negation 
(if there is one) as the ~ Q that the negation rules require be derived.

The new rules of PD call for some new strategies. We will introduce 
these as we introduce the new derivation rules of PD. PD contains four new 
rules, Universal Elimination, Universal Introduction, Existential Elimination, 
and Existential Introduction. Each of the new rules involves a quantifi ed sen-
tence and a substitution instance of that sentence. The elimination rule for the 
universal quantifi er is Universal Elimination:

Universal Elimination (∀E)

 (∀x)P

� P(a/x)

Here we use the expression ‘P(a/x)’ to stand for a substitution instance of 
the quantifi ed sentence (∀x)P. P(a/x) is obtained from the quantifi ed sen-
tence by dropping the initial quantifi er and replacing every occurrence of x 
with a. We will refer to the constant a that is substituted for the variable x as 
the instantiating constant for the rule ∀E (and similarly for the other rules 
introduced on the following pages).

Universal Elimination allows us, given a universal generalization, to 
infer a sentence that says of a particular thing what the given universal gener-
alization says of everything. Consider the following argument:

All philosophers are somewhat strange.

Socrates is a philosopher.

Socrates is somewhat strange.

The fi rst premise makes a universal claim: it says that each thing is such that 
if it is a philosopher then it is somewhat strange. We can symbolize this claim 
as ‘(∀y)(Py ⊃ Sy)’. The second premise can be symbolized as ‘Ps’ and the 
conclusion as ‘Ss’. Here is a derivation of the conclusion from the premises.
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476  PREDICATE LOGIC: DERIVATIONS

The sentence on line 3 is a substitution instance of the quantifi ed sentence on 
line 1. When we remove the initial (and only) quantifi er from ‘(∀y)(Py ⊃ Sy)’ 
we get the open sentence ‘Py ⊃ Sy’, which contains two free occurrences of ‘y’. 
Replacing both occurrences with the constant ‘s’ yields the substitution instance 
‘Ps ⊃ Ss’ on line 3, justifi ed by ∀E. We then use Conditional Elimination to 
obtain ‘Ss’.

This simple derivation illustrates the fi rst new strategy for constructing 
derivations in PD:

• When using Universal Elimination use goal sentences as guides to 
which constant to use in forming the substitution instance of the 
universally quantifi ed sentence.

At line 3 in the above derivation we could have entered ‘Pa ⊃ Sa’, or any other 
substitution instance of ‘(∀y)(Py ⊃ Sy)’. But obviously only the substitution 
instance using ‘s’ is of any use in completing the derivation.

The instantiating constant employed in Universal Elimination may or 
may not already occur in the quantifi ed sentence. The following is a correct 
use of Universal Elimination:

Derive: Ss

1 (∀y)(Py ⊃ Sy) Assumption
2 Ps Assumption

3 Ps ⊃ Ss 1 ∀E
4 Ss 2, 3 ⊃E

1 (∀x)Lxa Assumption

2 Lta 1 ∀E

If we take our one assumption to symbolize ‘Everyone loves Alice’, with ‘a’ 
designating Alice, then clearly it follows that Tom, or whomever t designates, 
loves Alice. The following is also a correct use of Universal Elimination:

1 (∀x)Lxa Assumption

2 Laa 1 ∀E

If everyone loves Alice, then it follows that Alice loves Alice, that is, that Alice 
loves herself.

The introduction rule for existential quantifiers is Existential 
Introduction:

Existential Introduction (∃I )

 P(a/x)

� (∃x)P
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This rule allows us to infer an existentially quantifi ed sentence from any one 
of its substitution instances. Here is an example:

1 Fa Assumption

2 (∃y)Fy 1 ∃I

That Existential Introduction is truth-preserving should also be obvious. If the 
thing designated by the constant ‘a’ is F, then at least one thing is F. For exam-
ple, if Alfred is a father, then it follows that someone is a father.

The following derivation uses Existential Introduction three times:

1 Faa Assumption

2 (∃y)Fya 1 ∃I
3 (∃y)Fyy 1 ∃I
4 (∃y)Fay 1 ∃I

These uses are all correct because the sentence on line 1 is a substitution 
instance of the sentence on line 2, and of the sentence on line 3, and of the 
sentence on line 4. If Alice is fond of herself, then it follows that someone is 
fond of Alice, that someone is fond of her/himself, and that Alice is fond of 
someone.

The strategy for using Existential Introduction is straightforward:

• When the goal to be derived is an existentially quantifi ed sentence 
establish a substitution instance of that sentence as a subgoal, with 
the intent of applying Existential Introduction to that subgoal to 
obtain the goal.

The rules Universal Introduction and Existential Elimination are some-
what more complicated. We begin with Universal Introduction:

provided that

 (i) a does not occur in an open assumption.
 (ii) a does not occur in (∀x)P.

Here, again, we will call the constant a in P(a/x) the instantiating constant. This 
rule specifi es that under certain conditions we can infer a universally quantifi ed 
sentence from one of its substitution instances. At fi rst glance this might seem 
implausible, for how can we infer, from a claim that a particular thing is of a 
certain sort, that everything is of that sort? The answer, of course, lies in the 
restrictions specifi ed in the “provided that” clause.

Universal Introduction (∀I )

 P(a/x)

� (∀x)P
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478  PREDICATE LOGIC: DERIVATIONS

Here is a very simple example. The sentences ‘(∀x)Fx’ and ‘(∀y)Fy’ 
are equivalent; they are simply notational variants of each other. They both say 
that everything is F. So we should be able to derive each from the other. Below 
we derive the second from the fi rst:

The use of Universal Introduction at line 3 meets both the restrictions on that 
rule. The instantiating constant ‘b’ does not occur in an open assumption and 
does not occur in the universal generalization entered on line 3.

The kind of reasoning that Universal Introduction is based on is com-
mon in mathematics. Suppose we want to establish that no even positive integer 
greater than 2 is prime. [A prime is a positive integer that is evenly divisible 
only by itself and 1, and is not 1.] We might reason thus:

Consider any even positive integer i greater than 2. Because i is even, i must 
be evenly divisible by 2. But since i is not 2 (it is greater than 2), it follows 
that i is evenly divisible by at least three positive integers: 1, 2, and i itself. So 
it is not the case that i is evenly divisible only by itself and 1, and i cannot be 
prime. Therefore no even positive integer greater than 2 is prime.

It would exhibit a misunderstanding of this reasoning to reply “but the positive 
integer i you considered might have been 4, and while the reasoning does hold 
of 4—it is not prime—that fact alone doesn’t show that the reasoning holds of 
every even positive integer greater than 2. You haven’t considered 6 and 8 and 
10 and. . . .” It would be a misunderstanding because in saying ‘Consider any 
even positive integer i greater than 2’ we don’t mean ‘Pick one’. We say ‘Con-
sider any even positive integer i . . .’ because it is easier to construct the argu-
ment when we are speaking, grammatically, in the singular (‘i is . . .’, ‘i is not 
. . .’). But what we are really saying is ‘Consider what we know about all positive 
integers that are even and greater than two . . .’ So the proof is a proof about 
all such integers. Similarly, in derivations we often use an individual constant 
to reason about all cases of a certain sort.

Suppose we want to establish that ‘(∀x)[Fx ⊃ (Fx ∨ Gx)]’ can be 
derived from no assumptions. (This will, of course, establish that this sentence 
of PL is a theorem in PD.) Here is one such derivation:

Derive: (∀y)Fy

1 (∀x)Fx Assumption

2 Fb 1 ∀E
3 (∀y)Fy 2 ∀I

Derive: (∀x)[Fx ⊃ (Fx ∨ Gx)]

1  Fc A / ⊃I

2  Fc ∨ Gc 1 ∨I
3 Fc ⊃ (Fc ∨ Gc) 1–2 ⊃I
4 (∀x)[Fx ⊃ (Fx ∨ Gx)] 3 ∀I
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The sentence on line 3 follows from the subderivation on lines 1–2, no matter 
what the constant ‘c’ designates. The subderivation establishes that no matter 
what c is, if it is F then it is F or G. Hence we are justifi ed in deriving the 
universal quantifi cation on line 4. Note that although ‘c’ occurs in the assump-
tion on line 1, that assumption is not open at line 4, so we have not run afoul 
of the fi rst restriction on the rule Universal Introduction.

On the other hand, Universal Introduction is misused in the following 
attempted derivation:

‘Fb’ does follow from line 1. But line 3 does not follow from line 2, and the 
restriction that the instantiating constant, in this case ‘b’, not occur in an open 
assumption prevents us from using Universal Introduction at line 3. (From the 
fact that Beth is a faculty member and Carl is not it does not follow that everyone 
is a faculty member.)

The rule Universal Introduction contains a second restriction, namely 
that the instantiating constant not occur in the derived universally quantifi ed 
sentence. The following attempt at a derivation illustrates why this restriction 
is needed:

Derive: (∀y)Fy

1 Fb & ~ Fc Assumption

2 Fb l &E
3 (∀y)Fy 2 ∀I MISTAKE!

The sentence on line 1 tells us that everying bears L to itself. It certainly follows 
that h bears L to itself. But it does not follow that everything bears L to h, and 
the second restriction on Universal Introduction disallows the use of that rule 
to obtain the sentence on line 3, because the instantiating constant, ‘h’, does 
occur in that sentence.

The strategy associated with Universal Introduction is

• When the current goal is a universally quantifi ed sentence make a 
substitution instance of that quantifi ed sentence a subgoal, with the 
intent of applying Universal Introduction to derive the goal from the 
subgoal. Make sure that the two restrictions on Universal Introduc-
tion will be met: use an instantiating constant in the substitution 
instance that does not occur in the universally quantifi ed goal sen-
tence and that does not occur in any assumption that is open at the 
line where the substitution instance is entered.

Derive: (∀x)Lxh

1 (∀x)Lxx Assumption

2 Lhh 1 ∀E
3 (∀x)Lxh 2 ∀I MISTAKE!

10.1 THE DERIVATION SYSTEM PD  479

ber38413_ch10_474-544.indd Page 479  12/4/12  1:38 PM ber38413_ch10_474-544.indd Page 479  12/4/12  1:38 PM F-400F-400



480  PREDICATE LOGIC: DERIVATIONS

Here is the elimination rule for existential quantifi ers:

provided that

 (i) a does not occur in an open assumption.
 (ii) a does not occur in (∃x)P.
 (iii) a does not occur in Q.

The idea behind this rule is that if we have an existentially quantifi ed sentence 
(∃x)P then we know that something is of the sort specifi ed by P, though not 
which thing. If, by assuming an arbitrary substitution instance P(a/x) of (∃x)P, 
we can derive a sentence Q that does not contain the instantiating constant a 
in P(a/x), then we can end the subderivation and enter Q on the next line of 
the derivation.

We illustrate a simple use of Existential Elimination by deriving 
‘(∃x)(Gx ∨ Fx)’ from {(∃z)Fz & (∀y)Hy}.

Existential Elimination (∃E)

 (∃x)P

  P(a/x)

  Q

� Q

‘Existential Elimination’ may seem like an odd name for the rule we used at 
line 6 of the above derivation, because the sentence entered at line 6 is itself 
an existentially quantifi ed sentence. But remember that what is common to 
all elimination rules is that they are rules that start with a sentence with a 
specifi ed main logical operator and produce a sentence that may or may not 
have that operator as a main logical operator. Here Existential Elimination 
cites the existentially quantifi ed sentence at line 2, along with the subderiva-
tion beginning with a substitution instance of that sentence. Note that we have 
met all the restrictions on Existential Elimination. The instantiating constant 
‘b’ does not occur in an assumption that is open as of line 6. Nor does ‘b’ 
occur in ‘(∃z)Fz’. Finally, ‘b’ does not occur in the sentence that is derived, 
at line 6, by Existential Elimination. All three of these restrictions are neces-
sary, as we will now illustrate.

Derive: (∃x)(Gx ∨ Fx)

1 (∃z)Fz & (∀y)Hy Assumption

2 (∃z)Fz 1 &E
3  Fb A / ∃E

4  Gb ∨ Fb 3 ∨I
5  (∃x)(Gx ∨ Fx) 4 ∃I
6 (∃x)(Gx ∨ Fx) 2, 3–5 ∃E
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Two specifi c strategies are associated with the rule Existential Elimina-
tion. The fi rst is this:

• When one or more of the currently accessible sentences in a deriva-
tion is an existentially quantifi ed sentence, consider using Existential 
Elimination to obtain the current goal. Assume a substitution instance 
that contains a constant that does not occur in the existential quanti-
fi cation, in an open assumption, or in the current goal. Work within 
the Existential Elimination subderivation to derive the current goal.

In other words, whenever an existentially quantifi ed sentence is acces-
sible consider making Existential Elimination the primary strategy for obtaining 
the current goal, doing the work required to obtain the current goal within 
the scope of the Existential Elimination subderivation. This is often necessary 
to avoid violating the restrictions on Existential Elimination. For example, in 
the previous derivation we had to use Existential Introduction within the scope 
of the assumption on line 3—because trying to derive ‘Gb ∨ Fb’ by Existential 
Elimination at line 5, prior to applying Existential Introduction, would violate 
the third restriction on Existential Elimination:

Line 5 is a mistake because the instantiating constant ‘b’ occurs in the sentence 
we are trying to obtain by Existential Elimination, in violation of the third 
restriction on Existential Elimination. From the truth of ‘(∃z)Fz’ it does not 
follow that the individual designated by ‘b’ is either G or F—although it does 
follow, as in the previous derivation, that something is either G or F. This is why, 
in the correctly done derivation, we used Existential Introduction inside of the 
Existential Elimination subderivation. Doing so results in a sentence that does 
not contain the instantiating constant ‘b’ and that therefore can correctly be 
moved out of the subderivation by Existential Elimination.

Here is another example in which the third restriction on Existential 
Elimination is violated:

Derive: (∃x)(Gx ∨ Fx)

1 (∃z)Fz & (∀y)Hy Assumption

2 (∃z)Fz 1 &E
3  Fb A / ∃E

4  Gb ∨ Fb 3 ∨I
5 Gb ∨ Fb 2, 3–4 ∃E MISTAKE!
6 (∃x)(Gx ∨ Fx) 5 ∃I

Derive: (∃z)Fbz

1 (∃z)Fzz Assumption

2  Fbb A / ∃E

3  (∃z)Fbz 3 ∃I
4 (∃z)Fbz 1, 2–3 ∃E MISTAKE!
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482  PREDICATE LOGIC: DERIVATIONS

The instantiating constant ‘b’ occurs in the sentence on line 4, in violation of 
restriction (iii) on Existential Elimination. It is clear that we don’t want the 
above to count as a derivation. Given the assumption on line 1 we know that 
something bears F to itself. At line 2 we assume that thing is b (knowing that 
this may not be the case). Line 3 certainly follows from line 2. If b bears F to 
itself then b does bear F to something. But line 4, where we have given up the 
assumption that it is b that bears F to itself, does not follow from the sentence 
at line 1, which is the single open assumption as of line 4. Contrast the preced-
ing derivation with the following:

Here ‘b’ does not occur in the sentence at line 4, so the third restriction on 
Existential Elimination is not violated. We have used Existential Elimination to 
show that ‘(∃y)Fyy’ follows from ‘(∃z)Fzz’, which should be no surprise since 
these sentences are clearly equivalent.

We will now examine some misuses of Existential Elimination that illustrate 
why the two other restrictions on Existential Elimination are also necessary.

Derive: (∃y)Fyy

1 (∃z)Fzz Assumption

2  Fbb A / ∃E

3  (∃y)Fyy 2 ∃I
4 (∃y)Fyy 1, 2–3 ∃E

From line 1 we know that if a particular thing, namely b, is G, then everything 
is F. And from line 2 we know that something is G. But we do not know that 
it is b that is G. So we should not be able to infer, as we have here tried to do 
at line 5, that everything is F. Line 5 is a mistaken application of Existential 
Elimination because restriction (i) has not been met. The assumption at line 
1, which contains the instantiating constant ‘b’, is still open as of line 5. The 
rationale for restriction (i) should now be clear. Existential Elimination uses a 
substitution instance of an existentially quantifi ed claim to show what follows 
from the existentially quantifi ed claim. But the constant used in the substitution 
instance, the instantiating constant, should be arbitrary, in the sense that no 
assumptions have been made concerning the thing designated by that constant. 
If the instantiating constant occurs in an open assumption then it is not arbi-
trarily selected, because the open assumption provides information about b 
(that if it is G everything is F). It may be the case that if Bob graduates then 

Derive: (∀x)Fx

1 Gb ⊃ (∀x)Fx Assumption
2 (∃z)Gz Assumption

3  Gb A / ∃E

4  (∀x)Fx 1, 3 ⊃E
5 (∀x)Fx 2, 3–4 ∃E MISTAKE!
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everyone is happy and the case that someone does graduate. But it does not 
follow from this that everyone is happy, for the someone who graduates may 
not be Bob.

We now turn to the rationale for the second restriction. Consider the 
following attempt at a derivation:

The problem is that the instantiating constant ‘a’ used at line 3 to form 
a substitution instance of the sentence ‘(∃z)Lza’ occurs in ‘(∃x)Lza’, violating 
the second restriction. If we only know that something stands in the relation L 
to a, we should not assume that that something is in fact a itself.

Universal Elimination produces a substitution of the universally quanti-
fi ed sentence to which it is applied. Existential Elimination does not, in general, 
produce a substitution instance of the existentially quantifi ed sentence to which 
it is applied. Indeed the sentence it produces may bear no resemblance, by any 
normal standard of resemblance, to the existentially quantifi ed sentence to 
which it is applied. Here is a case in point:

Derive: (∃w)Lww

1 (∀y)(∃z)Lzy Assumption

2 (∃z)Lza 1 ∀E
3  Laa A / ∃E

4  (∃w)Lww 3 ∃I
5 (∃w)Lww 2, 3–4 ∃E MISTAKE!

Here the sentence derived at line 6 has no obvious connection to the existen-
tially quantifi ed sentence at line 1. The existentially quantifi ed sentence tells us 
that something is G. At line 3 we assume that that thing is b. The constant ‘b’ 
is not used earlier in the derivation, so we are committed to nothing about b 
other than its being G. At line 4 we use Universal Elimination to obtain ‘Gb ⊃ 
Hc’, and then we use Conditional Elimination at line 5 to obtain ‘Hc’. At the 
point we apply Existential Elimination (line 6) there is here no open assumption 
that contains ‘b’—the only open assumptions are those on line 1 and line 2—so 
the fi rst restriction on Existential Elimination is met. The second and third 
restrictions are also met since ‘b’ occurs in neither ‘(∃z)Gz’ nor ‘Hc’. We can, 
therefore, derive ‘Hc’ by Existential Elimination at line 6.

Derive: (∃x)Hx

1 (∃z)Gz Assumption
2 (∀y)(Gy ⊃ Hc) Assumption

3  Gb A / ∃E

4  Gb ⊃ Hc 2 ∀E
5  Hc 3, 4 ⊃E
6 Hc 1, 3–5 ∃E
7 (∃x)Hx 6 ∃I
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484  PREDICATE LOGIC: DERIVATIONS

Note that in this case we were able to move ‘Hc’ out of the Existential 
Elimination subderivation prior to using Existential Introduction. We could do 
this because ‘c’ was not the instantiating constant for our use of Existential 
Elimination. However, we could also have applied Existential Introduction 
within the subderivation;

Existential Elimination provides a strategy for working from a substitu-
tion instance of an existentially quantifi ed sentence to a sentence that does not 
contain the instantiating constant of the substitution instance. If the other 
restrictions on Existential Elimination are also met the subderivation can be 
ended and the derived sentence entered on the next line of the derivation.

There is a second important strategy associated with Existential Elimi-
nation. We will use it to show that the set {(∃x) ~ Fx, (∀x)Fx} is inconsistent 
in PD. The foregoing set obviously is inconsistent, but demonstrating this is not 
as easy as it might seem. We might start as follows:

Derive: (∃x)Hx

1 (∃z)Gz Assumption
2 (∀y)(Gy ⊃ Hc) Assumption

3  Gb A / ∃E

4  Gb ⊃ Hc 2 ∀E
5  Hc 3, 4 ⊃E
6  (∃x)Hx 5 ∃I
7 (∃x)Hx 1, 3–6 ∃E

Line 4 is an obvious misuse of Existential Elimination. A more promising 
approach might be as follows:

Derive: Fa, ~ Fa

1 (∃x) ~ Fx Assumption
2 (∀x)Fx Assumption

3  Fa 2 ∀E

4  ~ Fa 1 ∃E MISTAKE!

We have derived a sentence and its negation (‘Fa’ and ‘~ Fa’), but only within the 
scope of our Existential Elimination subderivation. And since ‘a’ is the instantiating 
constant of the assumption at line 3, we cannot hope to move either ‘Fa’ or ‘~ Fa’ 
out from the scope of the assumption at line 3 by Existential Elimination. The 

Derive: Fa, ~ Fa

1 (∃x) ~ Fx Assumption
2 (∀x)Fx Assumption

3  ~ Fa A / ∃E

4  Fa 2 ∀E
5  ~ Fa 3 R
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situation we are in is not an uncommon one. We need to use Existential Elimina-
tion, and we can derive a contradiction within the Existential Elimination subderi-
vation, but the contradictory sentences we derive cannot be moved outside that 
subderivation because they contain the instantiating constant of the assumption.

The strategy we will use in situations such as this makes use of the fact 
that we can derive contradictory sentences within the Existential Elimination 
subderivation. Since we can do this, we can also derive any sentence we want 
by use of the appropriate negation rule. In our present case we want to derive 
a sentence and its negation, to show that the set we are working from is incon-
sistent in PD. There are no negations among our primary assumptions. We 
know taking ‘Fa’ and ‘~ Fa’ as our ultimate goals will not work (so long as 
‘~ Fa’ remains as our Existential Elimination assumption at line 3). So we will 
take a sentence that is accessable, ‘(∀x)Fx’, and its negation as our ultimate 
goals, and we will derive ‘~ (∀x)Fx’ by Negation Introduction within our 
Existential Elimination subderivation, and then move it out of that subderiva-
tion by Existential Elimination:

What may strike one as odd about this derivation is that we are assuming, at 
line 4, a sentence that is already accessible (as the assumption on line 2). But 
the point of making this assumption of a sentence we already have is to derive 
its negation, which we do at line 7. Negation Introduction requires us to assume 
this sentence, even though it also occurs at line 2, before we can apply that 
rule. At line 4 we could, of course, have equally well assumed ‘(∃x) ~ Fx’, in which 
case our ultimate goals would have been ‘(∃x) ~ Fx’ and ‘~ (∃x) ~ Fx’.

The strategy we are illustrating can be put thus:
• When contradictory sentences are available within an Existential 

Elimination subderivation but cannot be moved out of that subderi-
vation without violating the restrictions on Existential Elimination, 
derive another sentence—one that is contradictory to a sentence 
accessible outside the Existential Elimination subderivation and one 
that can be moved out. That sentence will be derivable by the appro-
priate negation strategy (because contradictory sentences are avail-
able within the Existential Elimination subderivation).

Derive: (∀x)Fx, ~ (∀x)Fx

1 (∃x) ~ Fx Assumption
2 (∀x)Fx Assumption

3  ~ Fa A / ∃E

4   (∀x)Fx A / ~ I

5   Fa 4 ∀E
6   ~ Fa 3 R
7  ~ (∀x)Fx 4–6 ~ I
8 ~ (∀x)Fx 1, 3–7 ∃E
9 (∀x)Fx 2 R
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486  PREDICATE LOGIC: DERIVATIONS

Using this strategy will frequently involve assuming, as the assumption of a 
negation strategy, a sentence that is already accessible outside the Existential 
Elimination subderivation.

Consider next the following failed attempt at a derivation of ‘~ (∃x)Fx’ 
from {~ (∃x)Fx}:

Derive: ~ (∃x)Fx

1 (∀x) ~ Fx Assumption

2  (∃x)Fx A / ~ I

3   Fa A / ∃E

4   ~ Fa 1 ∀E
5   Fa 3 R
6  ~ (∃x)Fx 3–5 ~ I MISTAKE!
7 ~ (∃x)Fx 2, 3–6 ∃E MISTAKE!

We are trying to derive a negation, ‘~ (∃x)Fx’, and so assume ‘(∃x)Fx’ at line 2. 
Clearly an Existential Elimination strategy is now called for, and accordingly 
we assume ‘Fa’ at line 3. It is now easy to derive the contradictory sentences 
‘Fa’ and ‘~ Fa’, and we do so at lines 4 and 5. But line 6 is a mistake. Our 
primary strategy is Negation Introduction and we have derived a sentence and 
its negation; but we have done so only within the scope of an additional assump-
tion, the one at line 3 that begins our Existential Elimination strategy. Line 6 
is a mistake because ‘Fa’ and ‘~ Fa’ have been derived, not from just the 
assumptions on lines 1 and 2, but also using the assumption on line 3. We need 
to complete our Existential Elimination strategy before using Negation Intro-
duction. And what we want our Existential Elimination strategy to yield is a 
sentence that can serve as one of the contradictory sentences we need to com-
plete the Negation Introduction subderivation we began at line 2.

Two sentences are accessible outside our Existential Elimination sub-
derivation—those on lines 1 and 2 (‘(∀x) ~ Fx’ and ‘(∃x)Fx’) and obtaining 
the negation of either one of these by Existental Elimination will allow us to 
complete the derivation. Here is a successful derivation in which we derive ‘~ (∀x) 
~ Fx’ by Existential Elimination.

Derive: ~ (∃x)Fx

 1 (∀x) ~ Fx Assumption

 2  (∃x)Fx A / ~ I

 3   Fa A / ∃E

 4    (∀x) ~ Fx A / ~ I

 5    ~ Fa 1 ∀E
 6    Fa 3 R
 7   ~ (∀x) ~ Fx 4–6 ~ I
 8  ~ (∀x) ~ Fx 2, 3–7 ∃E
 9  (∀x) ~ Fx 1 R
10 ~ (∃x)Fx 2–9 ~ I
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After making the assumption at line 3 we realize we can derive the contradic-
tory sentences ‘Fa’ and ‘~ Fa’. Because we want to obtain ‘~ (∀x) ~ Fx’ by 
Existential Elimination, we assume ‘(∀x) ~ Fx’ at line 4 and derive ‘~ Fa’ and 
‘Fa’ within the scope of that assumption, allowing us to then derive ‘~ (∀x) ~ Fx’ 
by Negation Introduction.

Alternatively, we could have used ‘(∃x)Fx’ as an assumption at line 4, 
derived ‘Fa’ and ‘~ Fa’, obtained ‘~ (∃x)Fx’ by Negation Elimination, moved 
that sentence out of the scope of the assumption made at line 3 by Existential 
Elimination, and then reiterated ‘(∃x)Fx’ within the scope of the assumption 
‘(∃x)Fx’ so as to have the contradictory sentences we need to fi nish the deriva-
tion with Negation Introduction. Note also that the assumption at line 4 is 
necessary to obtain its negation even though the sentence we assume is already 
available as an earlier assumption (on line 1). As noted earlier this process of 
making an assumption of a sentence that is already available outside the scope 
of an Existential Elimination strategy within that strategy in order to obtain its 
negation is extremely useful and frequently called for, as we will see in examples 
and exercises later in this chapter.

As another example, suppose we want to derive ‘~ (∃x)(Fx & ~ Gx)’ 
from {(∀x)(~ Gx ⊃ ~ Fx)}. Since our primary goal is a negation, we plan to use 
Negation Introduction, and since the assumption of that strategy will be an 
existentially quantifi ed sentence, we will use Existential Elimination within the 
Negation Introduction subderivation:

10.1 THE DERIVATION SYSTEM PD  487

Derive: ~ (∃x)(Fx & ~ Gx)

 1 (∀x)(~ Gx ⊃ ~ Fx) Assumption

 2  (∃x)(Fx & ~ Gx) A / ~ I

 3   Fa & ~ Ga A / ∃E

G
 ~ (∃x)(Fx & ~ Gx)

Following our new strategy we will begin a Negation Introduction subderiva-
tion inside of the Existential Elimination subderivation, assuming one of the 
sentences that is accessible from outside of that subderivation. In this example 
there are again two such sentences, ‘(∀x)(~ Gx ⊃ ~ Fx)’ and ‘(∃x)(Fx & ~ Gx)’. 
We arbitrarily select the latter as the assumption of the inner Negation Introduction 
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subderivation and complete the derivation as follows:

Derive: ~ (∃x)(Fx & ~ Gx)

 1 (∀x)(~ Gx ⊃ ~ Fx) Assumption

 2  (∃x)(Fx & ~ Gx) A / ~ I

 3   Fa & ~ Ga A / ∃E

 4    (∃x)(Fx & ~ Gx) A / ~ I

 5    ~ Ga ⊃ ~ Fa 1 ∀E
 6    ~ Ga 3 &E
 7    ~ Fa 5, 6 ⊃E
 8    Fa 3 &E
 9   ~ (∃x)(Fx & ~ Gx) 4–8 ~ I
10  ~ (∃x)(Fx & ~ Gx) 2, 3–9 ∃E
11  (∃x)(Fx & ~ Gx) 2 R
12 ~ (∃x)(Fx & ~ Gx) 2–11 ~ I

Although the assumption at line 4 is an existentially quantifi ed sentence, there 
is no need for a second use of Existential Elimination. We can derive the con-
tradictory pair of sentences ‘Fa’ and ‘~ Fa’ without making any additional 
assumptions.

We have specifi ed strategies for using each of the four new quantifi er 
rules. Now that we have introduced all the rules of PD a note about applying 
those rules is in order. The quantifi er introduction and elimination rules, 
like all the rules of PD, are rules of inference. That is, they apply only to whole 
sentences, not to subsentential components of sentences that may or may not 
themselves be sentences. The only sentences that quantifi er elimination rules 
can be applied to are sentences whose main logical operators are quantifi ers. 
Moreover, the quantifi er introduction rules generate only sentences whose 
main logical operators are quantifi ers. The following examples illustrate 
some common types of mistakes that ignore these points about the quantifi er 
rules of PD.

Derive: Fa ⊃ Ha

1 (∀x)Fx ⊃ Ha Assumption

2 Fa ⊃ Ha 1 ∀E MISTAKE!

The sentence on line 1 is not a universally quantifi ed sentence. Rather, it is a 
material conditional, so Universal Elimination cannot be applied to it. Obvi-
ously, the sentence on line 2 does not follow from the sentence on line 1. From 
that fact that if everything is F then a is H it does not follow that if a (which 
is only one thing) is F then a is H.
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Line 3 is a mistake even though the sentence it cites, ‘(∀x)(Fx ⊃ (∀y)Gy)’, is 
a universally quantifi ed sentence. It is a mistake because it attempts to apply 
Universal Elimination to ‘(∀y)Gy’, which occurs only as a component of the 
sentence on line 2. Rules of inference can only be applied to sentences that 
are not components of larger sentences. Universal Elimination can only pro-
duce a substitution instance, for example ‘Fa ⊃ (∀y)Gy’, of the entire sentence 
on line 2.

We hasten to add that it is possible to derive ‘Ga’ from the sentences 
on lines 1 and 2 but a different strategy is required:

Derive: Ga

1 Fa Assumption
2 (∀x)(Fx ⊃ (∀y)Gy) Assumption

3 (∀x)(Fx ⊃ Ga) 2 ∀E MISTAKE!
4 Fa ⊃ Ga 3 ∀E
5 Ga 1, 4 ⊃E

Here is another example illustrating a similar mistake:

Derive: Ga

1 Fa Assumption
2 (∀x)(Fx ⊃ (∀y)Gy) Assumption

3 Fa ⊃ (∀y)Gy 2 ∀E
4 (∀y)Gy 1, 3 ⊃E
5 Ga 4 ∀E

Derive: (∃z)Fz ⊃ Gb

1 Fa ⊃ Gb Assumption

2 (∃z)Fz ⊃ Gb 1 ∃I MISTAKE!

Derive: (∃z)(Fz ⊃ Gb)

1 Fa ⊃ Gb Assumption

2 (∃z)(Fz ⊃ Gb) 1 ∃I

Here Universal Elimination has only been applied to entire sentences occurring 
on earlier lines.

The following also illustrates a misuse of a quantifi er rule:

Existential Introduction produces existentially quantifi ed sentences, and the 
sentence on line 2 is a material conditional, not an existentially quantifi ed sen-
tence. Nor do we want to be able to derive the sentence on line 2 from the 
sentence on line 1. From ‘If Alfred wins the election then Bob will be happy’ 
it does not follow that if someone wins the election then Bob will be happy. A 
correct use of the rule would be
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490  PREDICATE LOGIC: DERIVATIONS

In the following failed derivation, the use of Universal Elimination is 
incorrect because the sentence on line 1 is not a universally quantifi ed sen-
tence. Rather, it is the negation of a universally quantifi ed sentence:

Having introduced all the rules of PD we can now defi ne syntactic analogues 
of core logical concepts for PD:

Derive: ~ Fb

1 ~ (∀y)Fy Assumption

2 ~ Fb 1 ∀E MISTAKE!

Derivability in PD: A sentence P of PL is derivable in PD from a set � of 
sentences of PL if and only if there is a derivation in PD in which all the 
primary assumptions are members of � and P occurs within the scope of 
only the primary assumptions.
Validity in PD: An argument of PL is valid in PD if and only if the con-
clusion of the argument is derivable in PD from the set consisting of 
the premises. An argument of PL is invalid in PD if and only if it is not 
valid in PD.
Theorem in PD: A sentence P of PL is a theorem in PD if and only if P is 
derivable in PD from the empty set.
Equivalence in PD: Sentences P and Q of PL are equivalent in PD if and 
only if Q is derivable in PD from {P} and P is derivable in PD from {Q}.
Inconsistency in PD: A set � of sentences of PL is inconsistent in PD if 
and only if there is a sentence P such that both P and ~ P are deriv-
able in PD from �. A set � is consistent in PD if and only if it is not 
inconsistent in PD.

 10.1E EXERCISES

 1. Construct derivations that establish the following claims:
 a. {(∀x)Fx} � (∀y)Fy
 *b. {Fb, Gb} � (∃x)(Fx & Gx)
 c. {(∀x)(∀y)Hxy} � (∃x)(∃y)Hxy
 *d. {(∃x)(Fx & Gx)} � (∃y)Fy & (∃w)Gw
 e. {(∀x)(∀y)Hxy, Hab ⊃ Kg} � Kg
 *f. {(∀x)(Fx � Gx), (∀y)(Gy � Hy)} � (∀x)(Fx � Hx)
 g. {(∀x)Sx, (∃y)Sy ⊃ (∀w)Ww} � (∃y)Wy
 *h. {(∀y)Hyy, (∃z)Bz} � (∃x)(Bx & Hxx)
 i. {(∀x)(∀y)Lxy, (∃w)Hww} � (∃x)(Lxx & Hxx)
 *j. {(∀x)(Fx ⊃ Lx), (∃y)Fy} � (∃x)Lx
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10.1 THE DERIVATION SYSTEM   491

 2. Identify the mistake in each of the following attempted derivations, and explain 
why it is a mistake.

 a. Derive: Na

1 (∀x)Hx ⊃ ~ (∃y)Ky Assumption
2 Ha ⊃ Na Assumption

3 Ha 1 ∀E
4 Na 2, 3 ⊃E

 *b. Derive: (∀x)(Bx & Mx)

1 Bk Assumption
2 (∀x)Mx Assumption

3 Mk 2 ∀E
4 Bk & Mk 1, 3 &I
5 (∀x)(Bx & Mx) 4 ∀I

 c. Derive: (∃x)Cx

1 (∃y)Fy Assumption
2 (∀w)(Fw � Cw) Assumption

3 Fa 1 ∃E
4 Fa � Ca 2 ∀∃E
5 Ca 3, 4 �E
6 (∃x)Cx 5 ∃I

 *d Derive: (∃z)Gz

1 (∀x)(Fx ⊃ Gx) Assumption
2 (∃y)Fy Assumption

3  Fa A / ∃E

4  Fa ⊃ Ga 1 ∀E
5  Ga 3, 4 ⊃E
6 Ga 2, 3–5 ∃E
7 (∃z)Gz 6 ∃I

 e. Derive: (∃y)(∀x)Ayx

1 (∀x)(∃y)Ayx Assumption

2 (∀x)Aax 1 ∀E
3 (∃y)(∀x)Ayx 2 ∃I

 *f. Derive: ~ Rba

1 (∃x)Rxx Assumption
2 (∀x)(∀y)(Rxy ⊃ ~ Ryx) Assumption

3  Raa A / ∃E

4  (∀y)(Ray ⊃ ~ Rya) 2 ∀E
5  Raa ⊃ ~ Raa 2 ∀E
6  ~ Raa 3, 5 ⊃E
7  (∀x) ~ Rxx 6 ∀I
8 (∀x) ~ Rxx 1, 3–7 ∃E
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492  PREDICATE LOGIC: DERIVATIONS

 10.2 USING DERIVATIONS TO ESTABLISH SYNTACTIC PROPERTIES OF PD

In this section we will work through a series of derivations, illustrating both 
strategies that are useful in constructing derivations in PD and how derivations 
are used to establish that various syntactic properties of PD hold of sentences 
and sets of sentences of PL.

We begin by repeating the strategies we have enumerated as useful in 
constructing derivations:

• If the current goal sentence can be obtained by Reiteration, use that 
rule, otherwise

• If the current goal sentence can be obtained by using a non-subderivation 
rule, or a series of such rules, do so; otherwise

• Try to obtain the goal sentence by using an appropriate subderiva-
tion rule.

• When using a negation rule, try to use an already accessible nega-
tion (if there is one) as the ~ Q that the negation rules require 
be derived.

• When using Universal Elimination use goal sentences as guides when 
choosing the instantiating constant.

• When the goal to be derived is an existentially quantifi ed sentence 
make a substitution instance of that sentence a subgoal, with the 
intent of applying Existential Introduction to that subgoal to obtain 
the goal.

• When the current goal is a universally quantifi ed sentence make a 
substitution instance of that quantifi ed sentence a subgoal, with 
the intent of applying Universal Introduction to that subgoal. 
Make sure the two restrictions on the instantiating constant for 
the use of Universal Introduction are met. Be sure to choose an 
instantiating constant that does not occur in the universally quan-
tifi ed sentence that is the goal and that does not occur in any 
assumption that will be open when Universal Introduction is 
applied to derive that goal.

• When one of the accessible assumptions is an existentially quantifi ed 
sentence, consider using Existential Elimination to obtain the current 
goal. Set up an Existential Elimination subderivation, and continue 
working within that subderivation until a sentence that does not con-
tain the constant used to form the substitution instance that is the 
assumption of that subderivation is derived.

• When contradictory sentences are available within an Existential 
Elimination subderivation but cannot be moved out of that subderi-
vation without violating the restrictions on Existential Elimination, 
derive another sentence—one that is contradictory to a sentence 
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accessible outside the Existential Elimination subderivation and that 
does not contain the instantiating constant for this use of Existential 
Elimination. That sentence will be derivable by the appropriate nega-
tion strategy (using the contradictory sentences that are available 
within the Existential Elimination subderivation).

• There will often be more than one plausible strategy, and often 
more than one will lead to success. Rather than trying to fi gure out 
which of these is the most promising it is often wise to just pick one 
and pursue it.

ARGUMENTS

An argument of PL is valid in PD if and only if the conclusion can be derived 
from the set consisting of the argument’s premises. The following argument is 
valid in PD, as we will now show.

The single premise is an existentially quantifi ed sentence—which suggests 
using Existential Elimination. The conclusion is a conjunction, suggesting 
Conjunction Introduction as a strategy. We will use both strategies, and since 
it is in general wise to do as much work as possible within an Existential 
Elimination strategy (so as to avoid violating the third restriction on Existential 
Elimination), we will make that strategy our primary strategy. We begin as 
follows:

(∃x)(Fx & Gx)

(∃y)Fy & (∃z)Gz

We will try to derive the conclusion of the argument within the scope of the 
Existential Elimination subderivation because doing so will avoid violating the 
third restriction on Existential Elimination, that the instantiating constant not 
occur in the derived sentence. In our derivation ‘a’ is the instantiating constant 
and it does not occur in the conclusion of the argument.

Derive: (∃y)Fy & (∃z)Gz

 1 (∃x)(Fx & Gx) Assumption

 2  Fb & Gb A / ∃E

G  (∃y)Fy & (∃z)Gz —, — &I
G (∃y)Fy & (∃z)Gz 1, 2–— ∃E
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Our current goal is a conjunction and can be obtained by Conjunction 
Introduction. The completed derivation is

Derive: (∃y)Fy & (∃z)Gz

1 (∃x)(Fx & Gx) Assumption

2  Fa & Ga A / ∃E

3  Fa  2 &E
4  (∃y)Fy 3 ∃I
5  Ga  2 &E
6  (∃z)Gz 5 ∃I
7  (∃y)Fy & (∃z)Gz 4, 6 &I
8 (∃y)Fy & (∃z)Gz 1, 2–7 ∃E

The following argument is also valid in PD:

Since the conclusion of this argument is a negation we will use Negation 
Introduction as our primary strategy and we will try to derive both ‘(∃y)Oy’ 
and ‘~ (∃y)Oy’ within a Negation Introduction subderivation:

(∀x)(Nx ⊃ Ox)
~ (∃y)Oy

~ (∃x)Nx

Since one of the accessible sentences, ‘(∃x)Nx’ is an existentially quantifi ed sen-
tence, we will try to obtain our current goal, ‘(∃y)Oy’, by Existential Elimination:

Derive: ~ (∃x)Nx

 1 (∀x)(Nx ⊃ Ox) Assumption
 2 ~ (∃y)Oy Assumption

 3  (∃x)Nx A / ~ E

G  (∃y)Oy
  ~ (∃y)Oy 2 R
G ~ (∃x)Nx 3–— ~ I

Derive: ~ (∃x)Nx

 1 (∀x)(Nx ⊃ Ox) Assumption
 2 ~ (∃y)Oy Assumption

 3  (∃x)Nx A / ~ E

 4   Na A / ∃E

G   (∃y)Oy
G  (∃y)Oy 3, 4–— ∃E
G  ~ (∃y)Oy 2 R
G ~ (∃x)Nx 3–— ~ I
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Looking at the sentences on lines 1 and 4, we see that we will be able to 
derive ‘Oa’ by Conditional Elimination after applying Universal Elimination 
to the sentence on line 1, with ‘a’ as the instantiating constant. And from 
‘Oa’ we can obtain ‘(∃y)Oy’ by Existential Introduction. So the completed 
derivation is

We will next consider two arguments, both of which involve relational 
predicates and quantifi ers with overlapping scope. The fi rst is

Derive: ~ (∃x)Nx

 1 (∀x)(Nx ⊃ Ox) Assumption
 2 ~ (∃y)Oy Assumption

 3  (∃x)Nx A / ~ E

 4   Na A / ∃E

 5   Na ⊃ Oa 1 ∀E
 6   Oa 4, 5 ⊃E
 7   (∃y)Oy 6 ∃I
 8  (∃y)Oy 3, 4–7 ∃E
 9  ~ (∃y)Oy 2 R
10 ~ (∃x)Nx 3–9 ~ I

(∀x)(∀y)(Hxy ⊃ ~ Hyx)

(∀x)(∃y)Hxy

(∀x)(∃y) ~ Hxy

Here our assumptions and our goal sentence are all universally quantifi ed sen-
tences. So we will clearly be using Universal Elimination and Universal Intro-
duction. Using Universal elimination on the second premise will result in an 
existentially quantifi ed sentence, ‘(∃y)Hay’, which suggests using Existential 
Elimination:

Derive: (∀x)(∃y) ~ Hxy

 1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
 2 (∀x)(∃y)Hxy Assumption

 3 (∃y)Hay 2 ∀E
 4  Hab A / ∃E

G (∀x)(∃y) ~ Hyx 3, 4–— ∃E
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On line 4 we chose an instantiating constant that does not appear earlier 
in the derivation, so that the restrictions on the instantiating constant can 
be met. Clearly at some point we will obtain ‘(∀x)(∃y) ~ Hyx’ by Universal 
Introduction. The question is whether we will use Universal Introduction 
before or after ending our Existential Elimination subderivation. We have 
stressed in earlier examples that it is generally wise to do as much work 
as possible within Existential Elimination subderivations. This might sug-
gest that we try to obtain ‘(∀x)(∃y) ~ Hyx’ within our Existential Elimina-
tion subderivation. But this is, in the present context, a bad idea. The 
substitution instance of ‘(∀x)(∃y) ~ Hyx’ we will be able to obtain is ‘(∃y) 
~ Hya’, in which ‘a’ is the instantiating constant. The first restriction on 
Universal Introduction requires that the instantiating constant not occur 
in any open assumption. But ‘a’ does occur in ‘Hab’, the assumption on 
line 4. So we cannot apply Universal Introduction within the scope of that 
assumption.

A strategy that will work is to obtain ‘(∃y) ~ Hya’ by Existential 
Elimination and then, after the assumption ‘Hab’ is discharged, to apply 
Universal Introduction. Note that our advice—to do as much work within 
Existential Elimination subderivations as possible—still holds. The current 
case is simply a reminder that doing as much work as possible within an 
Existential Elimination subderivation means, in part, doing as much work 
as can be done without violating the restrictions on the rules we use.

We have now settled on the following strategy:

Derive: (∀x)(∃y) ~ Hxy

 1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
 2 (∀x)(∃y)Hxy Assumption

 3 (∃y)Hay 2 ∀E
 4  Hab A / ∃E

G  (∃y) ~ Hya
G (∃y) ~ Hya 3, 4–— ∃E
G (∀x)(∃y) ~ Hyx — ∀I

Our current goal is ‘(∃y) ~ Hya’. We would like to use Existential Intro-
duction to derive this sentence, which means we first have to derive a 
substitution instance of this sentence. Looking at our first assumption, 
‘(∀x)(∀y)(Hxy ⊃ ~ Hyx)’, we see that with two applications of Universal 
Elimination we can obtain ‘Hab ⊃ ~ Hba’, then we can use Conditional 
Elimination to derive ‘~ Hba’, a substitution instance of our goal, ‘(∃y) ~ Hya’. 
Our completed derivation is
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We have met all the restrictions for using each of the two rules Existential 
Elimination and Universal Introduction. The constant we had to worry about in 
using Existential Elimination is ‘b’, for it is the instantiating constant used to 
form a substitution instance of ‘(∃y)Hay’ at line 4. By choosing ‘b’ as the instan-
tiating constant we were able to meet all the restrictions on Existential Elimina-
tion: ‘b’ does not occur in any assumption that is open at line 9, does not occur 
in the existentially quantifi ed sentence ‘(∃y)Hay’ at line 3, and does not occur 
in the sentence ‘(∃y) ~ Hya’ derived by Existential Elimination at line 9.

Our next argument is somewhat more complex, having one premise 
that contains three quantifi ers:

Derive: (∀x)(∃y) ~ Hyx

 1 (∀x)(∀y)(Hxy ⊃ ~ Hyx) Assumption
 2 (∀x)(∃y)Hxy Assumption

 3 (∃y)Hay 2 ∀E
 4  Hab A / ∃E

 5  (∀y)(Hay ⊃ ~ Hya) 1 ∀E
 6  Hab ⊃ ~ Hba 5 ∀E
 7  ~ Hba 4, 6 ⊃E
 8  (∃y) ~ Hya 7 ∃I
 9 (∃y) ~ Hya 3, 4–9 ∃E
10 (∀x)(∃y) ~ Hyx 9 ∀I

(∀x)[(∃z)Fxz ⊃ (∀y)Fxy]

(∃x)(∃y)Fxy

(∃x)(∀w)Fxw

The argument is valid in PD, and the derivation is not as diffi cult as may be 
feared. We will take our fi rst clue from the second assumption, which begins 
with two existential quantifi ers. This suggests we will be using Existential Elim-
ination twice, as follows:

Derive: (∃x)(∀y)Fxy

 1 (∀x)[(∃z)Fxz ⊃ (∀y)Fxy] Assumption
 2 (∃x)(∃y)Fxy Assumption

 3  (∃y)Fay A / ∃E

 4   Fab A / ∃E

G   (∃x)(∀w)Fxw ∃I
G  (∃x)(∀w)Fxw 3, 4–— ∃E
G (∃x)(∀w)Fxw 2, 3–— ∃E
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498  PREDICATE LOGIC: DERIVATIONS

We next use Universal Elimination to produce a conditional to which we 
can apply Conditional Elimination after applying Existential Introduction 
to the assumption on line 4, being careful to choose an instantiating con-
stant that will produce a match between the conditional and the existentially 
quantifi ed sentence we generate. Here the instantiating constant ‘a’ does 
the trick:

Derive: (∃x)(∀y)Fxy

 1 (∀x)[(∃z)Fxz ⊃ (∀y)Fxy] Assumption
 2 (∃x)(∃y)Fxy Assumption

 3  (∃y)Fay A / ∃E

 4   Fab A / ∃E

 5   (∃z)Faz ⊃ (∀y)Fay 1 ∀E
 6   (∃z)Faz 4 ∃I
 7   (∀y)Fay 5, 6 ⊃E

G   (∃x)(∀w)Fxw ∃I
G  (∃x)(∀w)Fxw 3, 4–— ∃E
G (∃x)(∀w)Fxw 2, 3–— ∃E

Our current goal is ‘(∃x)(∀w)Fxw’. To obtain it, by Existential Introduction, 
we need to fi rst derive a substitution instance of that sentence, say ‘(∀w)
Faw’. We have already derived ‘(∀y)Fay’. This is not the sentence we need, 
because it contains the variable ‘y’ where we want ‘w’. But we can easily 
obtain the substitution instance we want by using Universal Elimination 
(with a new instantiating constant) followed by Universal Introduction using 
the variable ‘y’ instead of the variable ‘w’. We do this at lines 8 and 9, com-
pleting the derivation:

Derive: (∃x)(∀y)Fxy

 1 (∀x)[(∃z)Fxz ⊃ (∀y)Fxy] Assumption
 2 (∃x)(∃y)Fxy Assumption

 3  (∃y)Fay A / ∃E

 4   Fab A / ∃E

 5   (∃z)Faz ⊃ (∀y)Fay 1 ∀E
 6   (∃z)Faz 4 ∃I
 7   (∀y)Fay 5, 6 ⊃E
 8   Fac 7 ∀E
 9   (∀w)Faw 8 ∀I
10   (∃x)(∀w)Fxw 9 ∃I
11  (∃x)(∀w)Fxw 3, 4–10 ∃E
12 (∃x)(∀w)Fxw 2, 3–11 ∃E
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As a fi nal example consider the following argument:

Assuming the predicate ‘loves’ is being used unambiguously, this argument is, 
perhaps surprisingly, valid. We can reason informally as follows: Because Tom 
loves Alice, Tom is a lover. And since everyone loves a lover, everyone loves 
Tom. But then everyone is a lover, and since everyone loves a lover, everyone 
loves everyone. Here is a symbolization of the argument in PL:

Everyone loves a lover.

Tom loves Alice.

Everyone loves everyone.

As in the last example, it appears that our ultimate goal will be obtained by 
Universal Introduction, and indeed that our penultimate goal will also be 
obtained by this rule. Our work would be over if we could proceed as follows:

(∀x)[(∃y)Lxy ⊃ (∀z)Lzx]

Lta

(∀x)(∀y)Lxy

But of course we cannot do this. Both line 3 and line 4 are in violation of the 
restrictions on Universal Introduction. In each case the constant we are replac-
ing, fi rst ‘a’ and then ‘t’, occurs in an open assumption (at line 2). To use 
Universal Introduction we need to obtain a sentence like ‘Lta’ but formed from 
other constants, any other constants. We select ‘c’ and ‘d’:

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta Assumption

3 (∀y)Lty 2 ∀I MISTAKE!
4 (∀x)(∀y)Lxy 3 ∀I MISTAKE!

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta  Assumption

G Lcd
G (∀y)Lcy — ∀I
G (∀x)(∀y)Lxy — ∀I

How might we obtain our current goal, ‘Lcd’? Recall the reasoning we did in 
English: from Lta we can infer that Tom is a lover—and we mirror this inference 
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500  PREDICATE LOGIC: DERIVATIONS

in PD by obtaining ‘(∃y)Lty’ by Existential Introduction. In English we reasoned 
that if Tom is a lover, then everyone loves Tom. We can mirror this in PD by 
applying Universal Elimination to line 1. And since we have established that 
Tom is a lover, we can infer that everyone loves him. So we have:

It is because neither ‘c’ nor ‘d’ occur in an open assumption that we will be 
able to derive our fi nal goal by two uses of Universal Introduction. But how 
do we get, in PD, from line 5 to ‘Lcd’? From line 5 we can get ‘Ldt’ by Uni-
versal Elimination. But how does this help us get ‘Lcd’? One difference 
between these two sentences is that ‘d’ occurs in the fi rst position after ‘L’ 
in the fi rst, and in the second position in the second. We also note that line 
1, which is our symbolization of ‘Everyone loves a lover’ contains two occur-
rences of the two-place predicate ‘L’, with ‘x’ occurring in the fi rst position 
after L in the fi rst occurrence, and in the second position in the second 
occurrence. So perhaps we can use this sentence to move ‘d’ from the fi rst 
position after L to the second position. (Remember that ‘Everyone loves a 
lover’ does say that if someone loves then that person gets loved.) Following 
this clue we proceed as follows:

Derive: (∀x)(∀y)Lxy

1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
2 Lta  Assumption

3 (∃y)Lty 2 ∃I
4 (∃y)Lty ⊃ (∀z)Lzt 1 ∀E
5 (∀z)Lzt 3, 4 ⊃E

G Lcd
G (∀y)Lcy — ∀I
G (∀x)(∀y)Lxy — ∀I

Derive: (∀x)(∀y)Lxy

 1 (∀x)[(∃y)Lxy ⊃ (∀z)Lzx] Assumption
 2 Lta Assumption

 3 (∃y)Lty 2 ∃I
 4 (∃y)Lty ⊃ (∀z)Lzt 1 ∀E
 5 (∀z)Lzt 3, 4 ⊃E
 6 Ldt 5 ∀E
 7 (∃y)Ldy 6 ∃I
 8 (∃y)Ldy ⊃ (∀z)Lzd 1 ∀E
 9 (∀z)Lzd 7, 8 ⊃E
10 Lcd 9 ∀E
11 (∀y)Lcy 10 ∀I
12 (∀x)(∀y)Lxy 11 ∀I

Our derivation is now complete.
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THEOREMS

‘(∀z)[Fz ⊃ (Fz ∨ Gz)]’ is a theorem in PD. To prove that it is such we need to 
derive it from the empty set, which means we will need a derivation that has 
no primary assumptions. The most plausible strategy for obtaining this sentence 
is Universal Introduction.

Derive: (∀z)[Fz ⊃ (Fz ∨ Gz)]

G Fb ⊃ (Fb ∨ Gb)
G (∀z)[Fz ⊃ (Fz ∨ Gz)] — ∀I

Our current goal is a material conditional and can be obtained by Conditional 
Introduction, using Disjunction Introduction to derive ‘Fb ∨ Gb’ within the 
Conditional Introduction subderivation:

We have met both of the restrictions on Universal Introduction. The instantiat-
ing constant ‘b’ does not occur in any assumption that is open at line 4 and 
does not occur in the sentence derived on line 4 by Universal Introduction.

To prove the theorem ‘(∃x)Fx ⊃ (∃x)(Fx ∨ Gx)’ we will use Condi-
tional Introduction, Existential Elimination, and Existential Introduction as 
well as Disjunction Introduction. The proof is straightforward:

Derive: (∀z)[Fz ⊃ (Fz ∨ Gz)]

1  Fb  A / ⊃I

2  Fb ∨ Gb 2 ∨I
3 Fb ⊃ (Fb ∨ Gb) 1–2 ⊃I
4 (∀z)[Fz ⊃ (Fz ∨ Gz)] 4 ∀I

We used Conditional Introduction as our primary strategy because our ultimate 
goal is a material conditional. We used Existential Elimination within that strategy 
because the assumption that begins the Conditional Introduction subderivation is 
an existentially quantifi ed sentence. And we used Existential Introduction at line 4, 
within our Existential Elimination subderivation, to generate the consequent of the 
goal conditional. The consequent does not contain the instantiating constant ‘a’ 
and can therefore be pulled out of the Existential Elimination subderivation.

Derive: (∃x)Fx ⊃ (∃x)(Fx ∨ Gx)

1  (∃x)Fx A / ⊃I

2   Fa A / ∃E

3   Fa ∨ Ga 2 ∨I
4   (∃x)(Fx ∨ Gx) 3 ∃I
5  (∃x)(Fx ∨ Gx) 1, 2–4 ∃E
6 (∃x)Fx ⊃ (∃x)(Fx ∨ Gx) 1–5 ⊃I
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The third theorem we will prove is ‘(∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy’. This 
is also a material conditional, and our primary strategy will again be Condi-
tional Introduction. The assumption of our Conditional Introduction subderi-
vation will be an existentially quantifi ed sentence, suggesting that we use Exis-
tential Elimination within our Conditional Introduction subderivation. And if 
we can derive ‘(∃x)(∃y)Fxy’ within our Existential Elimination subderivation 
we will be able to end that subderivation and complete our derivation:

Completing this derivation is now straightforward. We apply Universal Elimina-
tion to the sentence on line 2 to produce ‘Fab’ and then use Existential Intro-
duction twice to derive ‘(∃x)(∃y)Fxy’.

Derive: (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy

 1  (∃x)(∀y)Fxy Assumption

 2   (∀y)Fay A / ∃E

G   (∃x)(∃y)Fxy
G  (∃x)(∃y)Fxy 1, 2–— ∃E
G (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy 1–— ⊃I

We have met all the restrictions on Existential Elimination. The instantiating 
constant ‘a’ does not occur in any assumption that is open as of line 6. The 
constant ‘a’ also does not occur in the existentially quantifi ed sentence to which 
we are applying Existential Elimination, and it does not occur in the sentence 
derived at line 6 by Existential Elimination.

It is worth noting that since there are no restrictions on Existential 
Introduction, we could have entered ‘Faa’ rather than ‘Fab’ at line 3 (there 
are also no restrictions on Universal Elimination), and then applied Existential 
Introduction twice.

The last theorem we will consider is the quantifi ed sentence ‘(∃x)
(Fx ⊃ (∀y)Fy)’. At fi rst glance it appears that we should use Existential Intro-
duction to derive this sentence from some substitution instance, for example, 

Derive: (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy

1  (∃x)(∀y)Fxy Assumption

2   (∀y)Fay A / ∃E

3   Fab 2 ∀E
4   (∃y)Fay 3 ∃I
5   (∃x)(∃y)Fxy 4 ∃I
6  (∃x)(∃y)Fxy 1, 2–5 ∃E
7 (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy 1–6 ⊃I
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‘Fa ⊃ (∀y)Fy’ and so the latter sentence should be a subgoal. However, this 
will not work! ‘Fa ⊃ (∀y)Fy’ is not quantifi cationally true and therefore can-
not be derived in PD from no assumptions. So we must choose another 
strategy. Our primary strategy will be Negation Elimination and the proof 
will be quite complicated:

We have selected Negation Elimination as our primary strategy because there is 
no plausible alternative to that strategy. We have selected ‘(∃x)(Fx ⊃ (∀y)Fy)’ 
and ‘~ (∃x)(Fx ⊃ (∀y)Fy)’ as the contradictory sentences we will derive within 
that strategy because the latter sentence is our assumption on line 1 and 
therefore available for use. The question now is how to derive ‘(∃x)(Fx ⊃ 
(∀y)Fy)’. Since this is an existentially quantifi ed sentence we will attempt 
to derive it by Existential Introduction: fi rst deriving the substitution instance 
‘Fa ⊃ (∀y)Fy’ of that sentence (any other instantiating constant could be 
used). The substitution instance should be derivable using Conditional 
Introduction:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1  ~ (∃x)(Fx ⊃(∀y)Fy) A / ~ E

G  (∃x)(Fx ⊃ (∀y)Fy)
  ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

Our new goal is ‘(∀y)Fy’, a universally quantifi ed sentence. We cannot obtain 
it by applying Universal Introduction to the sentence on line 2, because ‘a’ 

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1  ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2   Fa A / ⊃I

G   (∀y)Fy
G  Fa ⊃ (∀y)Fy 2–— ⊃I
G  (∃x)(Fx ⊃ (∀y)Fy) — ∃I
  ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E
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here occurs in an open assumption. So we will try to obtain a different sub-
stitution instance of ‘(∀y)Fy’, ‘Fb’, and we will try to derive this substitution 
instance using Negation Elimination:

 1  ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2   Fa A / ⊃I

 3    ~ Fb A / ~ E

G   Fb
G   (∀y)Fy — ∀I
G  Fa ⊃ (∀y)Fy 2–— ⊃I
G  (∃x)(Fx ⊃ (∀y)Fy)
G  ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

We now have to decide on the sentence and its negation to be derived within 
the Negation Elimination subderivation. Two negations are accessible at this 
point: ‘~ Fb’ and ‘~ (∃x)(Fx ⊃ (∀y)Fy)’. We will make the latter sentence 
and ‘(∃x)(Fx ⊃ (∀y)Fy)’ our goals as picking ‘Fb’ and ‘~ Fb’ as goals appears 
to be unpromising (there is no obvious way to derive ‘Fb’ from the assump-
tions on lines 1–3). We plan to derive ‘(∃x)(Fx ⊃ (∀y)Fy)’ using Existential 
Introduction:

 1  ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2   Fa  A / ⊃I

 3    ~ Fb A / ~ E

G    Fb ⊃ (∀y)Fy
G    (∃x)(Fx ⊃ (∀y)Fy) — ∃I
    ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G   Fb
G   (∀y)Fy — ∀I
G  Fa ⊃ (∀y)Fy 2–— ⊃I
G  (∃x)(Fx ⊃ (∀y)Fy)
  ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

We have selected ‘b’ as the instantiating constant in our new goal because we 
anticipate using Conditional Introduction to derive ‘Fb ⊃ (∀y)Fy’, and this use 
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of ‘b’ will give us ‘Fb’ as an assumption, something that is likely to be useful 
as we already have ‘~ Fb’ at line 3.

 1  ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2   Fa  A / ⊃I

 3    ~ Fb A / ~ E

 4     Fb A / ⊃I

G     (∀y)Fy
G    Fb ⊃ (∀y)Fy
G    (∃x)(Fx ⊃ (∀y)Fy) — ∃I
    ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G   Fb
G   (∀y)Fy — ∀I
G  Fa ⊃ (∀y)Fy 2–— ⊃I
G  (∃x)(Fx ⊃ (∀y)Fy)
  ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
G (∃x)(Fx ⊃ (∀y)Fy) 1–— ~ E

Our new goal is ‘(∀y)Fy’ and since ‘Fb’ and ‘~ Fb’ are both accessible, we can 
easily derive it using Negation Elimination, completing the derivation:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1  ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2   Fa  A / ⊃I

 3    ~ Fb A / ~ I

 4     Fb A / ⊃I

 5     ~ (∀y)Fy A / ~ E

 6     Fb 4 R
 7     ~ Fb 3 R
 8     (∀y)Fy 5–7 ~ E
 9    Fb ⊃ (∀y)Fy 4–8 ⊃I
10    (∃x)(Fx ⊃ (∀y)Fy) 9 ∃I
11    ~ (∃x)(Fx ⊃ (∀y)Fy) l R
12   Fb  3–11 ~ E
13   (∀y)Fy 12 ∀I
14  Fa ⊃ (∀y)Fy 2–13 ⊃I
15  (∃x)(Fx ⊃ (∀y)Fy) 14 ∃I
16  ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
17 (∃x)(Fx ⊃ (∀y)Fy) 1–16 ~ E

This is a complex derivation, as we warned it would be. In the end we used the 
same pair of contradictory sentences in two Negation Elimination subderiva-
tions. This sometimes happens.
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EQUIVALENCE

To show that sentences P and Q of PL are equivalent in PD we must derive 
each from the unit set of the other. As our fi rst example we take the sentences 
‘(∀x)(Fa ⊃ Fx)’ and ‘Fa ⊃ (∀x)Fx’. We begin by deriving the second of these 
sentences from the fi rst, and since our goal sentence in this derivation is a 
material conditional, we will use Conditional Introduction:

We cannot derive our present goal, ‘(∀x)Fx’, by simply applying Universal Intro-
duction to ‘Fa’ at line 2, for the sentence on line 2 is an open assumption and ‘a’ 
occurs in that sentence. We can rather try to derive a different substitution instance 
of ‘(∀x)Fx’, say ‘Fb’, and then apply Universal Introduction. And this is easy to do 
by applying Universal Elimination to the sentence on line 1 (being careful to use 
an instantiating constant other than ‘a’), and then using Conditional Elimination:

Derive: Fa ⊃ (∀x)Fx

 1 (∀x)(Fa ⊃ Fx) Assumption

 2  Fa   A / ⊃I

G  (∀x)Fx
G Fa ⊃ (∀x)Fx 2–— ⊃I

We have met both restrictions on Universal Introduction at line 5: the instan-
tiating constant ‘b’ does not occur in any open assumption; nor does it occur 
in the derived sentence ‘(∀x)Fx’.

We must now derive ‘(∀x)(Fa ⊃ Fx)’ from ‘Fa ⊃ (∀x)Fx’. A plausible 
start is

Derive: Fa ⊃ (∀x)Fx

1 (∀x)(Fa ⊃ Fx) Assumption

2  Fa  A / ⊃I

3  Fa ⊃ Fb 1 ∀E
4  Fb  2, 3 ⊃E
5  (∀x)Fx 4 ∀I
6 Fa ⊃ (∀x)Fx 2–5 ⊃I

Derive: (∀x)(Fa ⊃ Fx)

1 Fa ⊃ (∀x)Fx Assumption

2  Fa  A / ⊃I

G  Fb
G Fa ⊃ Fb 2–— ⊃I
G (∀x)(Fa ⊃ Fx) — ∀I

ber38413_ch10_474-544.indd Page 506  12/4/12  1:38 PM ber38413_ch10_474-544.indd Page 506  12/4/12  1:38 PM F-400F-400



We plan to derive the last sentence by Universal Introduction, and the substitu-
tion instance on the prior line by Conditional Introduction. And we can now 
see how to complete the derivation. We can apply Conditional Elimination to 
the sentences on lines 1 and 2 to derive ‘(∀x)Fx’, from which we can then 
derive ‘Fb’:

Derive: (∀x)(Fa ⊃ Fx)

1 Fa ⊃ (∀x)Fx Assumption

2  Fa  A / ⊃I

3  (∀x)Fx 1, 2 ⊃E
4  Fb  3 ∀E
5 Fa ⊃ Fb 2–4 ⊃I
6 (∀x)(Fa ⊃ Fx) 5 ∀I

Having derived each member of our pair of sentences from the other, we have 
demonstrated that the sentences ‘(∀x)(Fa ⊃ Fx)’ and ‘Fa ⊃ (∀x)Fx’ are equiv-
alent in PD.

We will next show that ‘(∀x)Fx ⊃ Ga’ and ‘(∃x)(Fx ⊃ Ga)’ are equiva-
lent in PD. It is reasonably straightforward to derive ‘(∀x)Fx ⊃ Ga’ from ‘(∃x)
(Fx ⊃ Ga)’. We begin with

We will complete the derivation by using Existential Elimination—being careful 
to use an instantiating constant other than ‘a’ (because ‘a’ occurs in ‘Ga’, the 
sentence we plan to derive with Existential Elimination):

Derive: (∀x)Fx ⊃ Ga

 1 (∃x)(Fx ⊃ Ga) Assumption

 2  (∀x)Fx A / ⊃I

G  Ga
G (∀x)Fx ⊃ Ga 2–— ⊃I

Derive: (∀x)Fx ⊃ Ga

1 (∃x)(Fx ⊃ Ga) Assumption

2  (∀x)Fx A / ⊃I

3   Fb ⊃ Ga A / ∃E

4   Fb 2 ∀E
5   Ga 3–4 ⊃E
6  Ga  1, 3–5 ∃E
7 (∀x)Fx ⊃ Ga 2–6 ⊃I
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Our use of Existential Elimination at line 6 meets all three restrictions on that 
rule: the instantiating constant ‘b’ does not occur in ‘(∃x)(Fx ⊃ Ga)’, does not 
occur in any assumption that is open at line 6, and does not occur in the sen-
tence ‘Ga’ that we derived with Existential Elimination.

Deriving ‘(∃x)(Fx ⊃ Ga)’ from ‘(∀x)Fx ⊃ Ga’ is a somewhat more 
challenging exercise. Since our primary goal is an existentially quantifi ed sen-
tence, both Existential Introduction and Negation Elimination suggest them-
selves as primary strategies. We have opted to use Negation Elimination, and 
since the assumption that begins that strategy is a negation, we will make it and 
the sentence of which it is a negation our goals within the Negation Elimina-
tion subderivation:

When two primary strategies suggest themselves, it is frequently useful to use 
one as a secondary strategy within the other, primary strategy. Here we will 
use Existential Introduction as a secondary strategy: We will try to obtain the 
goal ‘(∃x)(Fx ⊃ Ga)’ by Existential Introduction, fi rst using Conditional Intro-
duction to derive an appropriate substitution instance of the goal sentence:

Derive: (∃x)(Fx ⊃ Ga)

 1 (∀x)Fx ⊃ Ga Assumption

 2  ~ (∃x)(Fx ⊃ Ga) A / ~ E

G  (∃x)(Fx ⊃ Ga)
  ~ (∃x)(Fx ⊃ Ga) 2 R
G (∃x)(Fx ⊃ Ga) 1–— ~ E

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1 (∀x)Fx ⊃ Ga Assumption

 2  ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3   Fa A / ⊃I

G   Ga
G  Fa ⊃ Ga 3–— ⊃I
G  (∃x)(Fx ⊃ Ga) — ∃I
  ~ (∃x)(Fx ⊃ Ga) 1 R
G (∃x)(Fx ⊃ Ga) 1–— ~ E
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The current goal, ‘Ga’, can be derived by Conditional Elimination using the 
sentence on line 1 if we can fi rst derive the antecedent ‘(∀x)Fx’ of that sen-
tence. It is not easy to see how the antecedent might be derived, but one 
strategy is to try to fi rst derive a substitution instance in which the instantiating 
constant does not occur in an open assumption. This rules out ‘Fa’. So we will 
try to derive ‘Fb’, and since no more direct strategy suggests itself at this point, 
we’ll try to derive ‘Fb’ by Negation Elimination:

Given ‘~ Fb’ at line 4 we can obtain ‘Fb ⊃ Ga’. We know we can do this because 
we know that given the negation of the antecedent of any conditional we can 
derive the conditional—as the following schema demonstrates:

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1 (∀x)Fx ⊃ Ga Assumption

 2  ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3   Fa A / ⊃I

 4    ~ Fb A / ~ E

G   Fb 4–— ~ E
G   (∀x)Fx — ∀I
G   Ga 1, — ⊃E
G  Fa ⊃ Ga 3–— ⊃I
G  (∃x)(Fx ⊃ Ga) ∃I
  ~ (∃x)(Fx ⊃ Ga) 1 R
G (∃x)(Fx ⊃ Ga) 1–— ~ E

Once we derive ‘Fb ⊃ Ga’ we can obtain ‘(∃x)(Fx ⊃ Ga)’ by Existential Intro-
duction. Because we already have the negation of that sentence at line 2 we 
can see our way clear to deriving a sentence and its negation as follows:

n ~ P

n�1  P  A / ⊃I

n�2   ~ Q A / ~ E

n�3   P n�1 R
n�4   ~ P n R
n�5  Q  n�2�n�4 ~ E
n�6 P ⊃ Q n�1�n�5 ⊃I
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510  PREDICATE LOGIC: DERIVATIONS

We will conclude our discussion of Equivalence in PD by deriving each 
of the following sentences from the unit set of the other:

Derive: (∃x)(Fx ⊃ Ga)

 1 (∀x)Fx ⊃ Ga Assumption

 2  ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3   Fa  A / ⊃I

 4    ~ Fb   A / ~ E

 5     Fb   A / ⊃I

 6      ~ Ga A / ~ E

 7      Fb  5 R
 8      ~ Fb 4 R
 9     Ga   6–8 ~ E
10    Fb ⊃ Ga  5–9 ⊃I
11    (∃x)(Fx ⊃ Ga) 10 ∃I
12    ~ (∃x)(Fx ⊃ Ga) 2 R
13   Fb     4–12 ~ E
14   (∀x)Fx   13 ∀I
15   Ga     1, 14 ⊃E
16  Fa ⊃ Ga    3–15 ⊃I
17  (∃x)(Fx ⊃ Ga)  16 ∃I
18  ~ (∃x)(Fx ⊃ Ga) 2 R
19 (∃x)(Fx ⊃ Ga)   1–18 ~ E

Establishing that these sentences are equivalent in PD is substantially more dif-
fi cult than was establishing equivalence in our last example, in large part 
because in these sentences the existentially quantifi ed formulas occur within the 
scope of universal quantifi ers. We begin by deriving ‘(∀x)(∃y)(Fx ⊃ Gxy)’ from 
{(∀x)[Fx ⊃ (∃y)Gxy]}. Since our one primary assumption will be a universally 
quantifi ed sentence, as will our goal, it is plausible to expect that we will use 
both Universal Elimination and Universal Introduction:

(∀x)[Fx ⊃ (∃y)Gxy]  (∀x)(∃y)(Fx ⊃ Gxy)

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2  Fa ⊃ (∃y)Gay 1 ∀E

G (∃y)(Fa ⊃ Gay)
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I
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It is now tempting to make ‘Fa ⊃ Gab’ our next subgoal, to be derived using 
Conditional Introduction. And if we can obtain ‘Fa ⊃ Gab’ we can go on to 
derive ‘(∃y)(Fa ⊃ Gay)’ by Existential Introduction:

‘(∃y)Gay’ can be derived from lines 2 and 3 by Conditional Elimination. We 
might then plan to use Existential Elimination to get from ‘(∃y)Gay’ to the 
current goal sentence ‘Gab’. But we have to be careful here. If we want to 
derive ‘Gab’ by Existential Elimination then the instantiating constant for Exis-
tential Elimination has to be a constant other than ‘b’.

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2 Fa ⊃ (∃y)Gay 1 ∀E
 3  Fa  A / ⊃I

G  Gab
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay) — ∃I
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2 Fa ⊃ (∃y)Gay 1 ∀E
 3  Fa  A / ⊃I

 4  (∃y)Gay 2, 3 ⊃E
 5   Gac A / ∃E

G   Gab
G  Gab 4, 5–— ∃E
G Fa ⊃ Gab 3–— ⊃I
G (∃y)(Fa ⊃ Gay) — ∃I
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

But how do we get from ‘Gac’ to ‘Gab’? A negation strategy might work, but 
it would be complicated as there are no negations among the accessible 
sentences.
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512  PREDICATE LOGIC: DERIVATIONS

It is time to consider an alternative strategy. We will try to obtain our 
penultimate goal, ‘(∃y)(Fa ⊃ Gay)’, by Negation Elimination rather than by 
Existential Introduction:

It may appear that because ‘(∃y)(Fa ⊃ Gay)’ is still our goal we are making 
no progress. But this is not so, for we now have an additional assumption to 
work from. We will now proceed much as we did in our fi rst attempt at this 
derivation:

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2  ~ (∃y)(Fa ⊃ Gay) A / ~ E

G  (∃y)(Fa ⊃ Gay) 15 ∃I
G  ~ (∃y)(Fa ⊃ Gay) 2 R
G (∃y)(Fa ⊃ Gay) 2–17 ~ E
G (∀x)(∃y)(Fx ⊃ Gxy) 18 ∀I

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2  ~ (∃y)(Fa ⊃ Gay) A / ~ E

 3   Fa A / ⊃I

 4   Fa ⊃ (∃y)Gay 1 ∀E

 5   (∃y)Gay 3, 4 ⊃E
 6    Gac A / ∃E

G    Gab
G   Gab 5, 6–— ∃E
G  Fa ⊃ Gab 3–— ⊃I
G  (∃y)(Fa ⊃ Gay) — ∃I
G  ~ (∃y)(Fa ⊃ Gay) 2 R
G (∃y)(Fa ⊃ Gay) 2–— ~ E
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

Once again we want to get from ‘Gac’ to ‘Gab’. But this time we do have an 
accessible negation, ‘~ (∃y)(Fa ⊃ Gay)’. So we will use a negation strategy, 
assuming ‘~ Gab’ and seeking to derive ‘(∃y)(Fa ⊃ Gay)’ along with reiterating 
its negation:

ber38413_ch10_474-544.indd Page 512  12/4/12  1:38 PM ber38413_ch10_474-544.indd Page 512  12/4/12  1:38 PM F-400F-400



What remains is to derive ‘(∃y)(Fa ⊃ Gay)’. This is easily done. We assume ‘Fa’, 
derive ‘Gac’ by Reiteration, derive ‘Fa ⊃ Gac’ by Conditional Introduction, and 
then ‘(∃y)(Fa ⊃ Gay)’ by Existential Introduction. The derivation is then complete:

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2  ~ (∃y)(Fa ⊃ Gay) A / ~ E

 3   Fa A ⊃I

 4   Fa ⊃ (∃y)Gay 1 ∀E
 5   (∃y)Gay 3, 4 ⊃E
 6    Gac A / ∃E

 7     ~ Gab A ~ E

G     (∃y)(Fa ⊃ Gay)
     ~ (∃y)(Fa ⊃ Gay) 2 R
G    Gab 7–— ~ E
G   Gab  5, 6–— ∃E
G  Fa ⊃ Gab 3–— ⊃I
G  (∃y)(Fa ⊃ Gay) — ∃I
  ~ (∃y)(Fa ⊃ Gay) 2 R
G (∃y)(Fa ⊃ Gay) 2–— ~ E
G (∀x)(∃y)(Fx ⊃ Gxy) — ∀I

Derive: (∀x)(∃y)(Fx ⊃ Gxy)

 1 (∀x)[Fx ⊃ (∃y)Gxy] Assumption

 2  ~ (∃y)(Fa ⊃ Gay) A / ~ E

 3   Fa     A ⊃I

 4   Fa ⊃ (∃y)Gay 1 ∀E
 5   (∃y)Gay   3, 4 ⊃E
 6    Gac   A / ∃E

 7     ~ Gab  A ~ E

 8      Fa  A / ⊃I

 9      Gac 6 R
10     Fa ⊃ Gac 8–9 ⊃I
11     (∃y)(Fa ⊃ Gay) 10 ∃I
12     ~ (∃y)(Fa ⊃ Gay) 2 R
13    Gab   7–12 ~ E
14   Gab    5, 6–13 ∃E
15  Fa ⊃ Gab   3–14 ⊃I
16  (∃y)(Fa ⊃ Gay) 15 ∃I
17  ~ (∃y)(Fa ⊃ Gay) 2 R
18 (∃y)(Fa ⊃ Gay)  2–17 ~ E
19 (∀x)(∃y)(Fx ⊃ Gxy) 18 ∀I
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514  PREDICATE LOGIC: DERIVATIONS

The second assumption suggests using Existential Elimination, and we know it 
is wise to do as much of the work of the derivation as possible within the Exis-
tential Elimination subderivation:

We must now derive ‘(∀x)[Fx ⊃ (∃y)Gxy]’ from ‘(∀x)(∃y)(Fx ⊃ Gxy)’. 
This will be an easier task since we can derive ‘(∃y)(Fa ⊃ Gay)’ by Universal 
Elimination and then do the bulk of the derivation within an Existential Elim-
ination subderivation:

The instantiating constant ‘b’ for our use of Existential Elimination does not occur 
in the existentially quantifi ed sentence ‘(∃y)(Fa ⊃ Gay)’, in any assumption that is 
open at line 8, or in the sentence ‘Fa ⊃ (∃y)Gay’ obtained by Existential Elimina-
tion. (In this case we could also have applied Universal Introduction within the 
Existential Elimination subderivation and then moved ‘(∀x)[Fx ⊃ (∃y)Gxy]’ out of 
that subderivation.) This completes our demonstration that ‘(∀x)[Fx ⊃ (∃y)Gxy]’ 
and ‘(∀x)(∃y)(Fx ⊃ Gxy)’ are equivalent in PD.

INCONSISTENCY

We next turn our attention to demonstrating that sets of sentences of PL are incon-
sistent in PD. Recall that a set of sentences is inconsistent in PD if we can derive both 
a sentence Q and its negation ~ Q from the set. As our fi rst example we will show 
that the set {(∀x)(Fx � Gx), (∃y)(Fy & ~ Gy)} is inconsistent in PD. Because this set 
does not contain a negation, it is not obvious what our Q and ~ Q should be. We 
will use the set member ‘(∀x)(Fx � Gx)’ as Q, making ~ Q ‘~ (∀x)(Fx � Gx)’:

Derive: (∀x)[Fx ⊃ (∃y)Gxy]

1 (∀x)(∃y)(Fx ⊃ Gxy) Assumption

2 (∃y)(Fa ⊃ Gay) 1 ∀E

3  Fa ⊃ Gab A / ∃E

4   Fa A ⊃I

5   Gab 3, 4 ⊃E
6   (∃y)Gay 5 ∃I
7  Fa ⊃ (∃y)Gay 4–6 ⊃I
8 Fa ⊃ (∃y)Gay 3, 4–7 ∃E
9 (∀x)[Fx ⊃ (∃y)Gxy] 8 ∀I

Derive: (∀x)(Fx � Gx), ~ (∀x)(Fx � Gx)

 1 (∀x)(Fx � Gx) Assumption
 2 (∃y)(Fy & ~ Gy) Assumption

G ~ (∀x)(Fx � Gx)
G (∀x)(Fx � Gx) 1 R
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Our current goal is a negation, which we will try to derive using Negation Intro-
duction. We assume ‘(∀x)(Fx � Gx)’ even though that sentence is one of our primary 
assumptions and hence already accessible. We assume it because Negation Introduction 
requires that we assume the sentence whose negation we wish to derive:

Derive: (∀x)(Fx � Gx), ~ (∀x)(Fx � Gx)

 1 (∀x)(Fx � Gx) Assumption
 2 (∃y)(Fy & ~ Gy) Assumption

 3  Fa & ~ Ga A / ∃E

G  ~ (∀x)(Fx � Gx)
G ~ (∀x)(Fx � Gx) 2, 3–— ∃E
 (∀x)(Fx � Gx) 1 R

Derive: (∀x)(Fx � Gx), ~ (∀x)(Fx � Gx)

1 (∀x)(Fx � Gx) Assumption
2 (∃y)(Fy & ~ Gy) Assumption

3  Fa & ~ Ga A / ∃E

4   (∀x)(Fx � Gx) A / ~ I

G  ~ (∀x)(Fx � Gx) 4–— ~ I
G ~ (∀x)(Fx � Gx) 2, 3–— ∃E
G (∀x)(Fx � Gx) 1 R

We are now fi nally in a position where we can work profi tably from the “top 
down”. From line 4 we can derive ‘Fa � Ga’ by Biconditional Elimination; from 
line 3 we can derive ‘Fa’; and then it is easy to derive both ‘Ga’ and ‘~ Ga’:

Derive: (∀x)(Fx � Gx), ~ (∀x)(Fx � Gx)

 1 (∀x)(Fx � Gx) Assumption
 2 (∃y)(Fy & ~ Gy) Assumption

 3  Fa & ~ Ga  A / ∃E

 4   (∀x)(Fx � Gx) A / ~ I

 5   Fa � Ga  4 ∀E
 6   Fa   3 &E
 7   Ga   5, 6 �E
 8   ~ Ga  3 &E
 9  ~ (∀x)(Fx � Gx) 4–8 ~ I
10 ~ (∀x)(Fx � Gx) 2, 3–9 ∃E
11 (∀x)(Fx � Gx) 1 R
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516  PREDICATE LOGIC: DERIVATIONS

Had we taken ‘(∃y)(Fy & ~ Gy)’ and ‘~ (∃y)(Fy & ~ Gy)’ as our Q and ~ Q we 
would have produced the following very similar derivation:

We will next demonstrate that {(∀z)(Hz ⊃ (∃y)Gzy), (∃w)Hw, (∀x) 
~ (∃y)Gxy} is inconsistent in PD. Though the set includes no negations, we can 
immediately derive one, say ‘~ (∃y)Gay’, by applying Universal Elimination to 
‘(∀x) ~ (∃y)Gxy’. So we will take ‘(∃y)Gay’ and ‘~ (∃y)Gay’ as our goals:

Derive: (∃y)(Fy & ~ Gy), ~ (∃y)(Fy & ~ Gy)

 1 (∀x)(Fx � Gx) Assumption
 2 (∃y)(Fy & ~ Gy) Assumption

 3  Fa & ~ Ga  A / ∃E

 4   (∃y)(Fy & ~ Gy) A / ~ I

 5   Fa � Ga  1 ∀E
 6   Fa   3 &E
 7   Ga   5, 6 �E
 8   ~ Ga  3 &E
 9  ~ (∃y)(Fy & ~ Gy) 4–8 ~ I
10 ~ (∃y)(Fy & ~ Gy) 2, 3–9 ∃E
11 (∃y)(Fy & ~ Gy) 2 R

Derive: (∃y)Gay, ~ (∃y)Gay

 1 (∀z)(Hz ⊃ (∃y)Gzy) Assumption
 2 (∃w)Hw Assumption
 3 (∀x) ~ (∃y)Gxy Assumption

G (∃y)Gay
 ~ (∃y)Gay 3 ∀E

Our assumptions include the existentially quantifi ed sentence ‘(∃w)Hw’, so we 
will try to derive ‘(∃y)Gay’ by Existential Elimination—which means we will 
have to be careful to pick a constant other than ‘a’ as the instantiating constant 
in our Existential Elimination assumption:

Derive: (∃y)Gay, ~ (∃y)Gay

 1 (∀z)(Hz ⊃ (∃y)Gzy) Assumption
 2 (∃w)Hw Assumption
 3 (∀x) ~ (∃y)Gxy Assumption

 4  Hb A / ∃E

G  (∃y)Gay
G (∃y)Gay 2, 4–— ∃E
 ~ (∃y)Gay 3 ∀E

ber38413_ch10_474-544.indd Page 516  12/4/12  1:38 PM ber38413_ch10_474-544.indd Page 516  12/4/12  1:38 PM F-400F-400



There is a problem in the offi ng here. We used ‘b’ as the instantiating 
constant at line 4 because ‘a’ occurs in the sentence we hope to obtain by 
Existential Elimination, ‘(∃y)Gay’. This means that we will be able to obtain 
‘(∃y)Gby’, but not ‘(∃y)Gay’ by applying Universal Elimination to line 1 
(obtaining ‘Hb ⊃ (∃y)Gby’ and then doing Conditional Elimination). So we 
need an alternative strategy for obtaining our current goal, ‘(∃y)Gay’. We 
will use Negation Elimination:

We can now complete the derivation by deriving both ‘(∃y)Gby’ and ‘~ (∃y)Gby’ 
within the scope of the assumption on line 5, the fi rst by the steps mentioned 
previously, the second by applying Universal Elimination to the sentence on 
line 3.

Derive: (∃y)Gay, ~ (∃y)Gay

 1 (∀z)(Hz ⊃ (∃y)Gzy) Assumption
 2 (∃w)Hw Assumption
 3 (∀x) ~ (∃y)Gxy Assumption

 4  Hb A / ∃E

 5   ~ (∃y)Gay A / ~ E

G  (∃y)Gay 5–— ~ E
G (∃y)Gay 2, 4–6 ∃E
 ~ (∃y)Gay 3 ∀E

Derive: (∃y)Gay, ~ (∃y)Gay

 1 (∀z) (Hz ⊃ (∃y)Gzy) Assumption
 2 (∃w)Hw   Assumption
 3 (∀x) ~ (∃y)Gxy Assumption

 4  Hb   A / ∃E

 5   ~ (∃y)Gay A / ~ E

 6   Hb ⊃ (∃y)Gby 1 ∀E
 7   (∃y)Gby  4, 6 ⊃E
 8   ~ (∃y)Gby 3 ∀E
 9  (∃y)Gay  5–8 ~ E
10 (∃y)Gay   2, 4–9 ∃E
11 ~ (∃y)Gay  3 ∀E

The technique of using a negation strategy within an Existential Elim-
ination subderivation, as we have just done, is useful as a way of generating a 
sentence that does not violate any of the restrictions on Existential Elimination. 
It is useful whenever we can see that some sentence and its negation are deriv-
able within the Existential Elimination subderivation, but those sentences con-
tain a constant that keeps us from moving either out from the Existential 
Elimination subderivation by Existential Elimination. In such a case we can 
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518  PREDICATE LOGIC: DERIVATIONS

always derive a sentence that does not contain the Existential Elimination sub-
derivation’s instantiating constant. We can do this by assuming the negation of 
the desired sentence and deriving the contradictory sentences within the nega-
tion elimination subderivation.

 10.2E EXERCISES

Note: Here, as always, the Student Solutions Manual contains answers to all unstarred 
exercises. In addition, when an exercise is preceded by a number sign (#) the 
Solutions Manual contains a detailed account of how the derivation given in 
the Solutions Manual is constructed.

 1. Construct derivations that establish the validity of the following arguments:

 a. (∀y)[Fy ⊃ (Gy & Hy)]

  (∀x)(Fx ⊃ Hx)

 *b. (∀x)(Fx � Gx)
  (∃x)Fx

  (∃x)(Fx & Gx)

 #c. (∀y)[Gy ⊃ (Hy & Fy)]
  (∃x)Gx

  (∃z)Fz

 *d. (∀x)[Fx ⊃ (Gx & Hx)]
  (∃y)(Fy & Dy)

  (∃z)Gz

 e. (∃x)Fx ⊃ (∀x)Gx
   Fa
  (∀x)(Gx ⊃ Hx)

  (∀x)Hx

 *f. (∀y)[(Hy & Fy) ⊃ Gy]
  (∀z)Fz

  (∀x)(Hx ⊃ Gx)

 g. (∀x)Fx ∨ (∀x)Gx

  (∀x)(Fx ∨ Gx)

 *h. (∀x)(Dx � ~ Gx)
  (∀y)(Gy ⊃ Hy)
  (∃z) ~ Hz

  (∃z)Dz

 #i. (∀x)(Fx ⊃ Hx)
  (∀y)(Gy ⊃ Hy)

  (∀y)[(Fy ∨ Gy) ⊃ Hy]

 *j. (∃y)(Fy ∨ Gy)
  (∀x)(Fx ⊃ Hx)
  (∀x)(Gx ⊃ Hx)

  (∃z)Hz

 k. (∃x)Hx
  (∀x)(Hx ⊃ Rx)
  (∃x)Rx ⊃ (∀x)Gx

  (∀x)(Fx ⊃ Gx)

 *l. ~ (∃x)Fx � (∀y)Gy
  (∀y) ~ Fy

  (∃y)Gy

 m. (∀x)Fx ∨ (∀y) ~ Gy
  Fa ⊃ Hb
  ~ Gb ⊃ Jb

  (∃y)(Hy ∨ Jy)

 *n. Fa ∨ (∀x) ~ Fx
  (∃y)Fy

  Fa
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 2. Prove that the following sentences of PL are theorems of PD:
 a. Fa ⊃ (∃y)Fy
 *b. (∀x)Fx ⊃ (∃y)Fy
 c. (∀x)[Fx ⊃ (Gx ⊃ Fx)]
 *d. ~ Fa ⊃ ~ (∀x)Fx
 e. ~ (∃x)Fx ⊃ (∀x) ~ Fx
 *f. (∃x)(∃y)Fxy ⊃ (∃y)(∃x)Fyx
 g. Fa ∨ (∃y) ~ Fy
 *h. (∀x)(Hx ⊃ Ix) ⊃ [(∃x)Hx ⊃ (∃x)Ix]
 #i. [(∀x)Fx ∨ (∀x)Gx] ⊃ (∀x)(Fx ∨ Gx)
 *j. [(∀x)Fx & (∃y)Gy] ⊃ (∃x)(Fx & Gx)
 k. (∃x)(Fx & Gx) ⊃ [(∃x)Fx & (∃x)Gx]
 *l. [(∃x)Fx ∨ (∃x)Gx] ⊃ (∃x)(Fx ∨ Gx)
 m. (∀x)Hx � ~ (∃x) ~ Hx

 3. Construct derivations that establish that the following pairs of sentences are 
equivalent in PD:

 a. (∀x)(Fx & Gx) (∀x)Fx & (∀x)Gx
 *b. (∀x)(Fx ⊃ Ga) (∃x)Fx ⊃ Ga
 c. (∀x)Fx ~ (∃x) ~ Fx
 *d. (∃y)(Fy & (∀x)Gx) (∃y)(∀x)(Fy & Gx)
 #e. (∃x)Fx ~ (∀x) ~ Fx
 *f. (∃x)(Fx & ~ Gx) ~ (∀x)(Fx ⊃ Gx)
 g. (∀z)(Hz ⊃ ~ Iz) ~ (∃y)(Hy & Iy)
 *h. (∃x)(Fa ⊃ Gx) Fa ⊃ (∃x)Gx
 i. (∀x)(∃y)(Fx ⊃ Gy) (∀x)(Fx ⊃ (∃y)Gy)

 4. Construct derivations that establish that the following sets are inconsistent in PD:
 a. {(∀x)(Fx � ~ Fx)}
 *b. {(∀x)Hx, (∀y) ~ (Hy ∨ Gyy)}
 #c. {~ (∀x)Fx, ~ (∃x) ~ Fx}
 *d. {~ (∀x) ~ Fx, ~ (∃x)Fx}
 e. {(∀x)(Fx ⊃ Gx), (∃x)Fx, ~ (∃x)Gx}
 *f. {(∀z) ~ Fz, (∃z)Fz}
 g. {(∀x)Fx, (∃y) ~ Fy}
 *h. {(∃y)(Hy & Jy), (∀x) ~ Jx}
 i. {(∀x)(Hx � ~ Gx), (∃x)Hx, (∀x)Gx}
 *j. {(∀z)(Hz ⊃ Iz), (∃y)(Hy & ~ Iy)}
 k. {(∀z)[Rz ⊃ (Tz & ~ Mz)], (∃y)(Ry & My)}
 *l. {(∀x)(Fx ⊃ Gx), (∀x)(Fx ⊃ ~ Gx), (∃x)Fx}

 5. Construct derivations that establish the following:
 a. {(∃y)(∀x)Fxy} � (∀x)(∃y)Fxy
 *b. {(∀z)(Gz ⊃ (∃x)Fxz), (∀x)Gx} � (∀z)(∃x)Fxz
 c. {(∃x)Fxxx} � (∃x)(∃y)(∃z)Fxyz
 *d. {(∀x)(∀y)(Bx ⊃ Txy} � (∀x)(∀y)[(Bx & Ny) ⊃ Txy]
 e. {(∀x)(Fx ⊃ (∃y)Gxy), (∃x)Fx} � (∃x)(∃y)Gyx
 *f. {(∀x)(∃y)Gxy, (∀x)(∀y)(Hxy ⊃ ~ Gxy)} � (∀x)(∃z) ~ Hxz
 g. {(∀x)(∀y)(Hxy ⊃ ~ Hyx), (∃x)(∃y)Hxy} � (∃x)(∃y) ~ Hyx
 *h. {(∀x)(∀y)Fxy ∨ (∀x)(∀y)Gxy} � (∀x)(∀y)(Fxy ∨ Gxy)
 i. {~ (∃x)(∃y)Rxy, (∀x)(∀y)(~ Hxy � Rxy)} � (∀x)(∀y)Hxy
 *j. {(∀x)(∀y)(Fxy � ~ Gyx), (∃z)(∃w)Gzw} � (∃x)(∃y) ~ Fxy
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520  PREDICATE LOGIC: DERIVATIONS

 6. Construct derivations that establish the validity of the following arguments:

 a. (∀x)(Fx ⊃ Gba)

  (∃x)Fx

  (∃y)Gya

 *b. (∀x)(Hx ⊃ (∀y)Rxyb)

  (∀x)(∀z)(Razx ⊃ Sxzz)

  Ha ⊃ (∃x)Sxcc

 c. (∃x)(∃y)(Fxy ∨ Fyx)

  (∃x)(∃y)Fxy

 *d. (∀x)(Fxa ⊃ Fax)

  (∃x)(Hx & ~ Fax)

  ~ (∀y)(Hy ⊃ Fya)

 e. (∀x)(∀y)[(∃z)(Fyz & ~ Fzx) ⊃ Gxy]

  ~ (∃x)Gxx

  (∀z)(Faz ⊃ Fza)

 *f. (∀x)(∀y)(Dxy ⊃ Cxy)

  (∀x)(∃y)Dxy

  (∀x)(∀y)(Cxy ⊃ Cyx)

  (∃x)(∃y)(Cxy & Cyx)

 g. (∀x)(Fx ⊃ (∃y)Gxy

  (∀x)(∀y) ~ Gxy

  (∀x) ~ Fx

 *h. (∀x)(Fx ⊃ (∃y)Gxy)

  (∀x)(∀y)(Gxy ⊃ Hxy)

  ~ (∃x)(∃y)Hxy

  ~ (∃x)Fx

 7. Prove that the following sentences of PL are theorems of PD:
 a. (∀x)(∃z)(Fxz ⊃ Fzx)
 *b. (∀x)Fxx ⊃ (∀x)(∃y)Fxy
 c. (∀x)(∀y)Gxy ⊃ (∀z)Gzz
 *d. (∃x)Fxx ⊃ (∃x)(∃y)Fxy
 e. (∀x)Lxx ⊃ (∃x)(∃y)(Lxy & Lyx)
 *f. (∃x)(∀y)Lxy ⊃ (∃x)Lxx
 #g. (∃x)(∀y)Fxy ⊃ (∃x)(∃y)Fxy
 *h. (∀x)(Fx ⊃ (∃y)Gya) ⊃ (Fb ⊃ (∃y)Gya)
 i. (∃x)(∃y)(Lxy � Lyx)
 *j. (∃x)(∀y)Hxy ⊃ (∀y)(∃x)Hxy
 k. (∀x)(∀y)(∀z)Gxyz ⊃ (∀x)(∀y)(∀z)(Gxyz ⊃ Gzyx)
 *l. (∀x)(Fx ⊃ (∃y)Gyx) ⊃ ((∃x)Fx ⊃ (∃x)(∃y)Gxy)
 m. (∀x)(∀y)(Fxy � Fyx) ⊃ ~ (∃x)(∃y)(Fxy & ~ Fyx)
 *n. (∃x)(Fx ⊃ (∀y)Fy)

 8. Construct derivations that establish that the following pairs of sentences are 
equivalent in PD:

 a. (∀x)(Fx ⊃ (∃y)Gya) (∃x)Fx ⊃ (∃y)Gya
 *b. (∀x)(Fx ⊃ (∀y)Gy) (∀x)(∀y)(Fx ⊃ Gy)
 #c. (∃x)[Fx ⊃ (∀y)Hxy] (∃x)(∀y)(Fx ⊃ Hxy)
 *d. (∀x)(∀y)(Fxy ⊃ Gy) (∀y)[(∃x)Fxy ⊃ Gy]
 e. (∀x)(∀y)(Fxy � ~ Gyx) (∀x)(∀y) ~ (Fxy � Gyx)

 9. Construct derivations that establish that the following sets are inconsistent in PD:
 a. {(∀x)(∀y)[(Ex & Ey) ⊃ Txy], (Ea & Eb) & ~ Tab}
 *b. {(∀x)(∃y)Lyx, ~ (∃x)Lxb}
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 c. {~ (∃x)Fxx, (∃x)(∀y)Fxy}
 *d. {(∀x)(∀y)(Fxy ⊃ Fyx), Fab, ~ (∃z)Fza}
 e. {(∀x)(∃y)Lxy, (∀y) ~ Lay}
 *f. {(∃x)(∀y)Gxy, ~ (∀y)(∃x)Gxy}
 g. {(∀x)[Hx ⊃ (∃y)Lyx], (∃x) ~ (∃y)Lyx, (∀x)Hx}
 *h. {~ (∃x)Fxx, (∀x)[(∃y)Fxy ⊃ Fxx], (∃x)(∃y)Fxy}
 #i. {(∀x)(∃y)Fxy, (∃z) ~ (∃w)Fzw}
 *j. {(∀x)(∀y)(Gxy � Gyx), (∃x)(∃y)(Gxy & ~ Gyx)}
 k. {(∀x)(∀y)(Fxy ∨ Gxy), (∃x)(∃y)(~ Fxy & ~ Gxy)}
 *l. {(∀x)(Fx ⊃ [(∃y)Gy ⊃ (∀y)Gy]), (∃x)(Fx & Gx), (∃y) ~ Gy}

 10.3 THE DERIVATION SYSTEM PD�

PD� is a derivation system that includes all the rules of PD, the rules that dis-
tinguish SD� from SD, and one additional rule of replacement. PD� is no 
stronger than PD; however, derivations in PD� are often shorter than the cor-
responding derivations in PD. The rules of replacement in PD� apply to sub-
formulas of sentences as well as to complete sentences. In the following exam-
ple each of the replacement rules has been applied to a subformula of the 
sentence on the previous line:

1 (∀x)[(Fx & Hx) ⊃ (∃y)Nxy] Assumption

2 (∀x)[~ (Fx & Hx) ∨ (∃y)Nxy] 1 Impl
3 (∀x)[~ (Fx & Hx) ∨ ~ ~ (∃y)Nxy] 2 DN
4 (∀x) ~ [(Fx & Hx) & ~ (∃y)Nxy] 3 DeM
5 (∀x) ~ [(Hx & Fx) & ~ (∃y)Nxy] 4 Com

Here Implication was applied to the subformula ‘(Fx & Hx) ⊃ (∃y)Nxy’ of the 
sentence on line 1 to produce the subformula ‘~ (Fx & Hx) ∨ (∃y)Nxy’ of the 
sentence on line 2. Double Negation was applied to the subformula ‘(∃y)Nxy’ of 
the sentence on line 2, to produce the subformula ‘~ ~ (∃y)Nxy’ of the sentence 
on line 3. De Morgan was applied to the subformula ‘~ (Fx & Hx) ∨ ~ ~ (∃y)
Nxy’ of the sentence on line 3 to produce the subformula ‘~ [(Fx & Hx) & 
~ (∃y)Nxy]’ of the sentence on line 4. Finally, Commutation was applied to 
the subformula ‘Fx & Hx’ of the sentence on line 4 to produce the ‘Hx & 
Fx’ of the sentence on line 5.

In applying rules of replacement in PD� it is important to correctly 
identify subformulas of sentences. Consider the following:

Line 2 is a mistake because the immediate subformula of the sentence on line 
1 is not of the form P ∨ (Q ∨ R). Rather, it is of the form P ∨ (∃x)(Q ∨ R).

1 (∀x)[Lx ∨ (∃y)(Bxy ∨ Jxy)] Assumption

2 (∀x)[(Lx ∨ (∃y)Bxy) ∨ Jxy] 1 Assoc MISTAKE!
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522  PREDICATE LOGIC: DERIVATIONS

As with all rules of replacement, Quantifi er Negation can be applied to subfor-
mulas within a sentence, as well as to an entire sentence. All these are proper 
uses of Quantifi er Negation:

The defi nitions of the basic concepts of PD� strictly parallel the defi ni-
tions of the basic concepts of PD, in all cases replacing ‘PD’ with ‘PD�’. Conse-
quently the tests for the various syntactic properties are carried out in the same 
way. The important difference between PD and PD� is that PD, with fewer rules, 
provides theoretical elegance and PD�, with more rules, provides practical ease.

In Section 10.2 we proved that ‘(∃x)(Fx ⊃ (∀y)Fy)’ is a theorem in PD. 
Our derivation was 17 lines long. We repeat it here.

1 ~ (∃y) ~ (∀x)(Fx ⊃ (∃z) ~ Gxy) Assumption

2 (∀y) ~ ~ (∀x)(Fx ⊃ (∃z) ~ Gxy) 1 QN
3 (∀y) ~ (∃x) ~ (Fx ⊃ (∃z) ~ Gxy) 2 QN
4 (∀y) ~ (∃x) ~ (Fx ⊃ ~ (∀z)Gxy) 3 QN

Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1  ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2   Fa     A / ⊃I

 3    ~ Fb   A / ~ I

 4     Fb   A / ⊃I

 5      ~ (∀y)Fy A / ~ E

 6      Fb  4 R
 7      ~ Fb 3 R
 8     (∀y)Fy 5–7 ~ E
 9    Fb ⊃ (∀y)Fy 4–8 ⊃I
10    (∃x)(Fx ⊃ (∀y)Fy) 9 ∃I
11    ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
12   Fb     3–11 ~ E
13   (∀y)Fy   12 ∀I
14  Fa ⊃ (∀y)Fy  2–13 ⊃I
15  (∃x)(Fx ⊃ (∀y)Fy) 14 ∃I
16  ~ (∃x)(Fx ⊃ (∀y)Fy) 1 R
17 (∃x)(Fx ⊃ (∀y)Fy) 1–16 ~ E

In addition to the rules of replacement of SD�, PD� contains Quantifi er 
Negation. Where P is an open sentence of PL in which x occurs free, the rule is

Quantifi er Negation (QN)

 ~(∀x)P �� (∃x) ~ P
  ~(∃x)P �� (∀x) ~ P 
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Derive: (∃x)(Fx ⊃ (∀y)Fy)

 1  ~ (∃x)(Fx ⊃ (∀y)Fy) A / ~ E

 2  (∀x) ~ (Fx ⊃ (∀y)Fy) 1 QN
 3  ~ (Fa ⊃ (∀y)Fy) 2 ∀E
 4  ~ (~ Fa ∨ (∀y)Fy) 3 Impl
 5  ~ ~ Fa & ~ (∀y)Fy 4 DeM
 6  ~ ~ Fa    5 &E
 7  Fa      6 DN
 8  ~ (∀y)Fy    5 &E
 9  (∀y)Fy    7 ∀I
10 (∃x)(Fx ⊃ (∀y)Fy) 1–9 ~ E

In Section 10.2 it took us 19 lines to derive ‘(∃x)(Fx ⊃ Ga)’ from 
{(∀x)Fx ⊃ Ga}. We repeat our derivation here:

Derive: (∃x)(Fx ⊃ Ga)

 1 (∀x)Fx ⊃ Ga   Assumption

 2  ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3   Fa     A / ⊃I

 4    ~ Fb   A / ~ E

 5     Fb   A / ⊃I

 6      ~ Ga A / ~ E

 7      Fb  5 R
 8      ~ Fb 4 R
 9     Ga   6–8 ~ E
10    Fb ⊃ Ga  5–9 ⊃I
11    (∃x)(Fx ⊃ Ga) 10 ∃I
12    ~ (∃x)(Fx ⊃ Ga) 2 R
13   Fb     4–12 ~ E
14   (∀x)Fx   13 ∀I
15   Ga     1, 14 ⊃E
16  Fa ⊃ Ga    3–15 ⊃I
17  (∃x)(Fx ⊃ Ga)  16 ∃I
18  ~ (∃x)(Fx ⊃ Ga) 1 R
19 (∃x)(Fx ⊃ Ga)   1–18 ~ E
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We can derive ‘(∃x)(Fx ⊃ Ga)’ from {(∀x)Fx ⊃ Ga} in just 12 lines in PD�:

 10.3E EXERCISES

 1. Show that each of the following derivability claims holds in PD�.
 a. {~ (∀y)(Fy & Gy)} � (∃y)(~ Fy ∨ ~ Gy)
 *b. {(∀w)(Lw ⊃ Mw), (∀y)(My ⊃ Ny)} � (∀w)(Lw ⊃ Nw)
 c. {(∃z)(Gz & Az), (∀y)(Cy ⊃ ~ Gy)} � (∃z)(Az & ~ Cz)
 *d. {~ (∃x)(~ Rx & Sxx), Sjj} � Rj
 e. {(∀x)[(~ Cxb ∨ Hx) ⊃ Lxx], (∃y) ~ Lyy} � (∃x)Cxb
 *f. {(∀x)Fx, (∀z)Hz} � ~ (∃y)(~ Fy ∨ ~ Hy)

 2. Show that each of the following arguments is valid in PD�.

 a. (∀x) ~ Jx

  (∃y)(Hby ∨ Ryy) ⊃ (∃x)Jx

  (∀y) ~ (Hby ∨ Ryy)

 *b. ~ (∃x)(∀y)(Pxy & ~ Qxy)

  (∀x)(∃y)(Pxy ⊃ Qxy)

 c. (∀x) ~ ((∀y)Hyx ∨ Tx)

  ~ (∃y)(Ty ∨ (∃x) ~ Hxy)

  (∀x)(∀y)Hxy & (∀x) ~ Tx

 *d. (∀z)(Lz � Hz)

  (∀x) ~ (Hx ∨ ~ Bx)

  ~ Lb

 e. (∀z)[Kzz ⊃ (Mz & Nz)]

  (∃z) ~ Nz

  (∃x) ~ Kxx

Derive: (∃x)(Fx ⊃ Ga)

 1 (∀x)Fx ⊃ Ga   Assumption

 2  ~ (∃x)(Fx ⊃ Ga) A / ~ E

 3  (∀x) ~ (Fx ⊃ Ga) 2 QN
 4  ~ (Fb ⊃ Ga)  3 ∀E
 5  ~ (~ Fb ∨ Ga)  4 Impl
 6  ~ ~ Fb & ~ Ga  5 DeM
 7  ~ ~ Fb    6 &E
 8  Fb      7 DN
 9  (∀x)Fx    8 ∀I
10  Ga      1, 9 ⊃E
11  ~ Ga     6 &E
12 (∃x)(Fx ⊃ Ga)   2–11 ~ E
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 *f. (∃x)[~ Bxm & (∀y)(Cy ⊃ ~ Gxy)]

  (∀z)[~ (∀y)(Wy ⊃ Gzy) ⊃ Bzm]

  (∀x)(Cx ⊃ ~ Wx)

 g. (∃z)Qz ⊃ (∀w)(Lww ⊃ ~ Hw)

  (∃x)Bx ⊃ (∀y)(Ay ⊃ Hy)

  (∃w)(Qw & Bw) ⊃ (∀y)(Lyy ⊃ ~ Ay)

 *h. (∀y)(Kby ⊃ ~ Hy)

  (∀x)[(∃y)(Kby & Qxy) ⊃ (∃z)(~ Hz & Qxz)]

 i. ~ (∀x)(~ Gx ∨ ~ Hx) ⊃ (∀x)[Cx & (∀y)(Ly ⊃ Axy)]

  (∃x)[Hx & (∀y)(Ly ⊃ Axy)] ⊃ (∀x)(Fx & (∀y)Bxy)

  ~ (∀x)(∀y)Bxy ⊃ (∀x)(~ Gx ∨ ~ Hx)

 3. Show that each of the following sentences is a theorem in PD�.
 a. (∀x)(Ax ⊃ Bx) ⊃ (∀x)(Bx ∨ ~ Ax)
 *b. (∀x)(Ax ⊃ (Ax ⊃ Bx)) ⊃ (∀x)(Ax ⊃ Bx)
 c. ~ (∃x)(Ax ∨ Bx) ⊃ (∀x) ~ Ax
 *d. (∀x)(Ax ⊃ Bx) ∨ (∃x)Ax
 e. ((∃x)Ax ⊃ (∃x)Bx) ⊃ (∃x)(Ax ⊃ Bx)
 *f. (∀x)(∃y)(Ax ∨ By) � (∃y)(∀x)(Ax ∨ By)

 4. Show that the members of each of the following pairs of sentences are equiva-
lent in PD�.

 a. ~ (∀x)(Ax ⊃ Bx) (∃x)(Ax & ~ Bx)
 *b. (∃x)(∃y)Axy ⊃ Aab (∃x)(∃y)Axy � Aab
 c. ~ (∀x) ~ [(Ax & Bx) ⊃ Cx] (∃x)[~ Ax ∨ (~ Cx ⊃ ~ Bx)]
 *d. ~ (∀x)(∃y)[(Ax & Bx) ∨ Cy] (∃x)(∀y)[~ (Cy ∨ Ax) ∨ ~ (Cy ∨ Bx)]
 e. (∀x)(Ax � Bx) ~ (∃x)[(~ Ax ∨ ~ Bx) & (Ax ∨ Bx)]
 *f. (∀x)(Ax & (∃y) ~ Bxy) ~ (∃x)[~ Ax ∨ (∀y)(Bxy & Bxy)]

 5. Show that each of the following sets of sentences is inconsistent in PD�.
 a. {[(∀x)(Mx � Jx) & ~ Mc] & (∀x)Jx}
 *b. {~ Fa, ~ (∃x)(~ Fx ∨ ~ Fx)}
 c. {(∀x)(∀y)Lxy ⊃ ~ (∃z)Tz, (∀x)(∀y)Lxy ⊃ ((∃w)Cww ∨ (∃z)Tz),
  (~ (∀x)(∀y)Lxy ∨ (∀z)Bzzk) & (~ (∀z)Bzzk ∨ ~ (∃w)Cww), (∀x)(∀y)Lxy}
 *d. {(∃x)(∀y)(Hxy ⊃ (∀w)Jww), (∃x) ~ Jxx & ~ (∃x) ~ Hxm}
 e. {(∀x)(∀y)(Gxy ⊃ Hc), (∃x)Gix & (∀x)(∀y)(∀z)Lxyz, ~ Lcib ∨ ~ (Hc ∨ Hc)}
 *f. {(∀x)[(Sx & Bxx) ⊃ Kax], (∀x)(Hx ⊃ Bxx), (∃x)(Sx & Hx),
  (∀x) ~ (Kax & Hx)}

 6. a.  Show that Universal Introduction and Universal Elimination are eliminable 
in PD� by developing routines that can be used in place of these rules to 
obtain the same results. (Hint: Consider using Quantifi er Negation, Existen-
tial Introduction, and Existential Elimination.)

           *b.  Show that Existential Introduction and Existential Elimination are elimi-
nable in PD� by developing routines that can be used in place of these 
rules to obtain the same results. (Hint: Consider using Quantifi er Negation, 
Universal Introduction, and Universal Elimination.)

10.3 THE DERIVATION SYSTEM PD�  525
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Identity Introduction is unlike other introduction rules in that it appeals to no 
previous line or lines of the derivation. Rather, it allows sentences of the spec-
ifi ed form to be entered on any line of any derivation, no matter what sen-
tences, if any, occur earlier in the derivation.1 Identity Introduction is truth-
preserving because every sentence that can be introduced by it, that is every 
sentence of the form (∀x)x � x, is quantifi cationally true. These sentences 
simply say of each thing that it is identical to itself. Here is a very simple deri-
vation of a theorem using the rule Identity Introduction:

 10.4 THE DERIVATION SYSTEM PDE

The symbolic language PLE extends PL to include sentences that contain func-
tors and the identity predicate. Accordingly we need to extend the derivation 
system PD developed earlier in this chapter to allow for derivations that include 
these new sentences of PLE. We shall do so by adding an introduction rule and 
an elimination rule for the identity predicate, and then modifying the quanti-
fi er rules so as to allow for sentences containing functors. The resulting extended 
predicate derivation system is called PDE.

The introduction rule for ‘�’ is

Identity Introduction (�I)

� (∀x)x � x

Derive: a � a

1 (∀y)y � y �I
2 a � a 1 ∀E

Notice that the sentence on line 1 is not an assumption.
The elimination rule for “�” is

Identity Elimination (�E)

 t1 � t2   t1 � t2
 P or  P

� P(t1//t2)  � P(t2//t1)

where t1 and t2 are closed terms.

The notation

P(t1//t2)

is read ‘P with one or more occurrences of t2 replaced by t1’. Similarly P(t2//t1) 
is read ‘P with one or more occurrences of t1 replaced by t2’. Recall that the 
closed terms of PLE are the individual constants together with complex terms 

1Metaformulas (such as ‘(∀x)x�x’) that specify sentences that can be introduced without reference to previous 
sentences occurring in a derivation are usually called axiom schemas. An axiom schema is a metaformula such 
that every formula having its form may be entered in a derivation. Some derivation systems rely primarily on 
axiom schemas; these are called axiomatic systems.
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such as ‘f(a,b)’ and ‘f(g(a,b),c)’ that contain no variables. Identity Elimination 
permits the replacement of one closed term with another in a sentence only if 
those closed terms designate the same thing (t1 � t2 says that t1 and t2 do 
designate the same thing). The following simple examples illustrate the use of 
this rule:

Derive: Hda

1 c � d Assumption
2 Hca Assumption

3 Hda 1, 2 �E

Derive: (∀x)(Fxh ⊃ Ghx)

1 h � e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fyh ⊃ Ghy) 1, 2 �E
4 Fah ⊃ Gha 3 ∀E
5 (∀x)(Fxh ⊃ Ghx) 4 ∀I

The following three derivations are very similar but not identical:

In the fi rst derivation we replaced, at line 3, both occurrences of ‘e’ in line 2 
with ‘h’. In the second derivation we replaced, at line 3, only the second occur-
rence of ‘e’ in line 2 with ‘h’. And in the third derivation we replaced, at line 3, 
only the fi rst occurrence of ‘e’ in line 2 with ‘h’. All of these are appropriate 
uses of Identity Elimination, as are the following:

Derive: (∀x)(Fxe ⊃ Ghx)

1 h � e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fye ⊃ Ghy) 1, 2 �E
4 Fae ⊃ Gha 3 ∀E
5 (∀x)(Fxe ⊃ Ghx) 4 ∀I

Derive: (∀x)(Fxh ⊃ Gex)

1 h � e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fyh ⊃ Gey) 1, 2 �E
4 Fah ⊃ Gea 3 ∀E
5 (∀x)(Fxh ⊃ Gex) 4 ∀I

Derive: Hc

1 (∀x)Hf(a,x) Assumption
2 c � f(a,b) Assumption

3 Hf(a,b) 1 ∀E
4 Hc 2, 3 �E
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But these additional sentences do not advance us toward our goal of ‘Wab’. 
There are alternative ways of deriving ‘Wab’. Here is one:

Derive: Wab

1 Haa ⊃ Waa Assumption
2 Hab Assumption
3 a � b Assumption

4 Hab ⊃ Wab 1, 3 �E
5 Wab 2, 4 ⊃E

1 Haa ⊃ Waa Assumption
2 Hab Assumption
3 a � b Assumption

4 Hab ⊃ Wab 1, 3 �E
5 Hbb ⊃ Wbb 1, 3 �E
6 Haa ⊃ Wbb 1, 3 �E
7 Hbb ⊃ Waa 1, 3 �E
8 Hba ⊃ Wba 1, 3 �E

Note that from lines 1 through 3 we can obtain, by Identity Elimination, not 
just ‘Hab ⊃ Wab’ but a host of additional sentences, including those on lines 
5 through 8 below:

Consider next these derivations:

Derive: Wab

1 Haa ⊃ Waa Assumption
2 Hab Assumption
3 a � b Assumption

4 Haa 2, 3 �E
5 Waa 1, 4 ⊃E
6 Wab 3, 5 �E

Derive: Had

1 c � d Assumption
2 Hac Assumption

3 Had 1, 2 �E

Derive: (∀x)(Fxh ⊃ Ghx)

1 h � e Assumption
2 (∀y)(Fye ⊃ Gey) Assumption

3 (∀y)(Fyh ⊃ Ghy) 1, 2 �E
4 Fah ⊃ Gha 3 ∀E
5 (∀x)(Fxh ⊃ Ghx) 4 ∀I
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Identity Elimination allows us, given a sentence of the form t1 � t2, to replace 
any occurrence of t1 with t2 in any sentence that contains t1, and vice versa. 
In our example we have the identity sentence ‘a � b’ and that very sentence 
contains ‘a’, so we can replace the ‘a’ in ‘a � b’ with ‘b’, and we do so at 
line 3.
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Derive: Hc

1 (∀x)Hf(a,x) Assumption
2 c � f(a,b) Assumption

3 Hf(a,b) 1 ∀E
4 Hc 2, 3 �E

Derive: (a � b & b � c) ⊃ a � c

1  a � b & b � c A / ⊃I

2  a � b 1 &E
3  b � c 1 &E
4  a � c 2, 3 �E
5 (a � b & b � c) ⊃ a � c 1–4 ⊃I

The sentence ‘(a � b & b � c) ⊃ a � c’ says that if a is identical to 
b, and b is identical to c, then a is identical to c. As expected, it is a theorem 
of PDE. Here is a proof:

In considering this example one might well ask whether the justifi cation for 
line 4 indicates that we have replaced ‘b’ in line 3 with ‘a’, based on the iden-
tity at line 2, or that we replaced ‘b’ in line 2 with ‘c’ based on the identity at 
line 3. Fortunately, both replacements are allowed so the justifi cation can be 
understood either way.

As we have already seen, sentences of the form t1 � t1 are normally 
obtained by Identity Introduction, as in

1 b � b ⊃ Fb Assumption

2 (∀x)x � x �I
3 b � b 2 ∀E
4 Fb 1, 3 ⊃E

1 b � b ⊃ Fb Assumption
2 a � b Assumption

3 b � b 2, 2 �E
4 Fb 1, 3 ⊃E

In special circumstances we can obtain a sentence of the form a � a by Identity 
Elimination. This happens when the a of a � a already occurs in an accessible 
identity sentence. Here is an example:
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As we saw in Chapter 7, the identity predicate is useful in symbolizing 
sentences containing defi nite descriptions. Consider the argument:

The Roman general who defeated Pompey conquered Gaul.

Julius Caesar is a Roman general, and he defeated Pompey.

Julius Caesar conquered Gaul.

This argument can be symbolized in PLE as:

This argument is valid, for if there is one and only one thing that is a Roman 
general and defeated Pompey, and if Julius Caesar is a Roman general who 
defeated Pompey, then Caesar is the Roman general who defeated Pompey, 
and is therefore someone who conquered Gaul. We can show this argument 
is valid in PDE:

(∃x)[((Rx & Dxp) & (∀y)[(Ry & Dyp) ⊃ y � x]) & Cxg]

Rj & Djp

Cjg

Here is another argument that involves a defi nite description.

Derive: Cjg
 1 (∃x) [((Rx & Dxp) & (∀y)[(Ry & Dyp) ⊃ y � x]) & Cxg] Assumption
 2 Rj & Djp     Assumption

 3  ((Ra & Dap) & (∀y)[(Ry & Dyp) ⊃ y � a]) & Cag A / ∃E

 4  (Ra & Dap) & (∀y)[(Ry & Dyp) ⊃ y � a]  3 &E
 5  (∀y)[(Ry & Dyp) ⊃ y � a] 4 &E
 6  (Rj & Djp) ⊃ j � a 5 ∀E
 7  j � a     2, 6 ⊃E
 8  Cag     3 &E
 9  Cjg     7, 8 �E
10 Cjg      1, 3–9 ∃E

The primary author of the Declaration of Independence was a slave owner.

Thomas Jefferson was the primary author of the Declaration of Independence.

Thomas Jefferson was a slave owner.

The conclusion of this argument can be symbolized as ‘Ot’ where ‘Ox’ is 
interpreted as ‘x owns at least one slave’ and ‘t’ designates Thomas Jefferson. 
To symbolize the premises we need a way of saying there was one and 
only one primary author of the Declaration of Independence. We can do 
so as follows:

(∃x)[Px & (∀z)(Pz ⊃ z � x)]
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We are here using ‘Px’ for ‘x is a primary author of the Declaration of Inde-
pendence’. This sentence of PL can be read as ‘There is at least one thing x 
that is a primary author of the Declaration of Independence and each thing z 
that is a primary author of the Declaration of Independence is identical to x.’ 
The full argument can now be symbolized as:
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We can construct a derivation that establishes that the above argument is valid 
in PDE. Here is a start:

(∃x)([Px & (∀z)(Pz ⊃ z � x)] & Ox)

Pt & (∀z)(Pz ⊃ z � t)

Ot

Our intent is to derive the fi nal goal using Existential Elimination. If we can 
derive ‘Ot’ within the Existential Elimination subderivation we will be able to 
move it out of that subderivation because ‘t’ is not the instantiating constant 
in our assumption at line 3 (it is for this reason that we picked a constant other 
than ‘t’ as our instantiating constant at line 3). ‘Oa’ can be derived immediately 
from line 3 by Conjunction Elimination. What remains is to get to a point 
where we can use Identity Elimination to infer ‘Ot’ from ‘Oa’ and an appropri-
ate identity sentence, either ‘a � t’ or ‘t � a’.

Derive: Ot

 1 (∃x)([Px & (∀z)(Pz ⊃ z � x)] & Ox) Assumption
 2 Pt & (∀z)(Pz ⊃ z � t) Assumption

 3  [Pa & (∀z)(Pz ⊃ z � a)] & Oa A / ∃E

G  Ot
G Ot   1, 2–— ∃E

Derive: Ot

 1 (∃x)([Px & (∀z)(Pz ⊃ z � x)] & Ox) Assumption
 2 Pt & (∀z)(Pz ⊃ z � t) Assumption

 3  [Pa & (∀z)(Pz ⊃ z � a)] & Oa A / ∃E

 4  Oa 3 &E

G  a � t
G  Ot 4, — �E
G Ot   1, 2–— ∃E
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Identity sentences are obtainable both from line 2 and from line 3. This suggests 
two strategies, and both will work. First we will try to obtain ‘a � t’. We start by 
obtaining ‘(∀z)(Pz ⊃ z � t)’ from line 2 by Conjuction Elimination and then 
‘Pa ⊃ a � t’ by Universal Elimination. And ‘Pa’ is available from line 3 by two 
uses of Conjunction Elimination. This will allow us to complete the derivation:

We could also have completed our derivation by deriving the identity sentence 
‘t � a’ as follows:

Derive: Ot

 1 (∃x)([Px & (∀z)(Pz ⊃ z � x) & Ox) Assumption
 2 Pt & (∀z)(Pz ⊃ z � t) Assumption

 3  [Pa & (∀z)(Pz ⊃ z � a)] & Oa A / ∃E

 4  Oa      3 &E
 5  (∀z)(Pz ⊃ z � t) 2 &E
 6  Pa ⊃ a � t   5 ∀E
 7  Pa & (∀z)(Pz ⊃ z � a) 3 &E
 8  Pa      7 &E
 9  a � t     6, 8 ⊃E
10  Ot      4, 9 �E
11 Ot       1, 3–10 ∃E

When we formulated Identity Elimination we did so in a way that allows 
for the presence of complex terms in PDE. Two of our quantifi er rules, Exis-
tential Introduction and Universal Elimination, need to be modifi ed so that 
they too allow for the presence of complex terms. The other rules of PD func-
tion without modifi cation as part of PDE. We recast Existential Introduction 
and Universal Elimination as follows:

Derive: Ot

 1 (∃x)([Px & (∀z)(Pz ⊃ z � x)] & Ox Assumption
 2 Pt & (∀z)(Pz ⊃ z � t) Assumption

 3  [Pa & (∀z)(Pz ⊃ z � a)] & Oa A / ∃E

 4  Oa      3 &E
 5  Pa & (∀z)(Pz ⊃ z � a) 3 &E
 6  (∀z)(Pz ⊃ z � a) 5 &E
 7  Pt ⊃ t � a   6 ∀E
 8  Pt      2 &E
 9  t � a     7, 8 ⊃E
10  Ot      4, 9 �E
11 Ot       1, 3–10 ∃E

where t is any closed term

Existential Introduction (∃I)

 P(t/x)

� (∃x)P
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10.4 THE DERIVATION SYSTEM PDE  533

Consider the following simple derivations:

Universal Elimination (∀E)

 (∀x)P

� P(t/x)

where t is any closed term

In the fi rst derivation ‘Fa’ is the substitution instance associated with both the 
use of Universal Elimination and the use of Existential Introduction. In the 
terminology of previous sections, ‘a’ is the instantiating constant for these uses 
of the two rules. In the second derivation ‘Fg(a)’ is the substitution instance 
associated with both the use of Universal Elimination and the use of Existen-
tial Introduction. However, the instantiating term in the use of Universal 
Elimination is ‘g(a)’ (we have replaced ‘y’ with ‘g(a)’) whereas the instantiat-
ing term in the use of Existential Introduction is ‘a’, not ‘g(a)’ (we replaced 
the constant ‘a’ with the variable ‘z’). Since the individual term used to form 
substitution instances associated with the quantifi er rules is sometimes an indi-
vidual constant and sometimes a closed complex term, we will hereafter speak, 
with reference to substitution instances and uses of Existential Introduction 
and Universal Elimination, of the instantiating term rather than the instantiat-
ing constant.

But we will not modify Existential Elimination and Universal Introduc-
tion so as to allow substitution instances used in these rules to be formed from 
complex terms and so we will continue to talk, with reference to these latter 
rules, only of the instantiating constant. To understand why we will not modify 
Universal Introduction to allow for complex instantiating terms, consider the 
following attempt at a derivation:

Derive: (∃z)Fz

1 (∀y)Fy Assumption

2 Fa 1 ∀E
3 (∃z)Fz 2 ∃I

Derive: (∃z)Fg(z)

1 (∀y)Fy Assumption

2 Fg(a) 1 ∀E
3 (∃z)Fg(z) 2 ∃I

Derive: (∀x)Ex

1 (∀x)Ed(x) Assumption

2 Ed(a) 1 ∀E
3 (∀x)Ex 2 ∀I MISTAKE!
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If this were a legitimate derivation in PDE then the following argument would 
be valid in PDE:

(∀x)Ed(x)

(∀x)Ex

We do not want this argument to be valid in PDE. If our UD is the set of 
positive integers and we interpret ‘Ex’ as ‘x is even’ and ‘d(x)’ as ‘x times 2’, 
the premise says that each positive integer is such that 2 times that integer is 
even, which is true. The conclusion says that each positive integer is even, which 
is false. The problem is in the attempted inference of line 3 from line 2. The 
expression ‘d(a)’ cannot designate an arbitrarily selected member of the UD; 
rather it can refer only to a member of the UD that is the value of the function 
d for some member a of the UD. On the interpretation given previously, for 
example, ‘d(a)’ can only refer to even numbers.

For similar reasons, we continue to require that in using Existential 
Elimination the instantiating term must be an individual constant, not a closed 
complex term. Here is a failed derivation that would be allowed if we dropped 
this requirement:

To see why we do not want this derivation to go through suppose we again 
use the set of positive integers as our UD and interpret ‘Ox’ as ‘x is odd’ 
and ‘d(x)’ as ‘x times 2’. Then the primary assumption says that there is a 
positive integer that is odd, which is true. The sentence on line 4 says there 
is an integer that is 2 times some positive integer and that is odd, and this 
is false. The problem is that the assumption on line 2 contains information 
about the individual that is assumed to have property O—namely that it is 
the value of the function d for some member of the UD, while the existen-
tially quantifi ed sentence on line 1 does not contain this information. The 
requirement that the assumption for an Existential Elimination subderiva-
tion be a substitution instance formed from a constant guarantees that the 
assumption does not contain information that is absent from the existentially 
quantifi ed sentence. Hence we continue to require that in using Existential 
Elimination the assumed substitution instance must be formed using an indi-
vidual constant.

Having said that, it is important to note that while for Universal Intro-
duction and Existential Elimination the instantiating term must be a constant, 

Derive: (∃x)Od(x)

1 (∃x)Ox Assumption

2  Od(a) A / ∃E MISTAKE!

3  (∃x)Od(x) 2 ∃I
4 (∃x)Od(x) 1, 2–3 ∃E MISTAKE!
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the substitution instances associated with these rules may contain complex 
terms. For example, the following is a correctly done derivation:
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Here ‘a’ is the instantiating constant for the use of Universal Introduction: In 
moving from line 2 to line 3 we replaced ‘a’ with ‘y’. But ‘d(a)’ is the instan-
tiating term associated with Universal Elimination. In moving from line 1 to 
line 2 we replace ‘x’ with ‘d(a)’. So ‘Ed(a)’ is a substitution instance of ‘(∀x)
Ex’ because it is the result of replacing every occurrence of ‘x’ in ‘Ex’ with 
‘d(a)’ and ‘Ed(a)’ is a substitution instance of ‘(∀y)Ed(y)’ because it is the 
result of replacing every occurrence of ‘y’ in ‘Ed(y)’ with ‘a’.

And the following is an allowed use of Existential Elimination:

Derive: (∀y)Ed(y)

1 (∀x)Ex Assumption

2 Ed(a) 1 ∀∃
3 (∀y)Ed(y) 2 ∀I

Derive:

1 (∃x)Fg(x) Assumption

2  Fg(b) A / ∃E

3  (∃z)Fz 2 ∃I
4 (∃z)Fz 1, 2–3 ∃E

Here ‘Fg(b)’ is a substitution instance of ‘(∃x)Fg(x)’ and also a substi-
tution instance of ‘(∃z)Fz’. In its role as a substitution instance of ‘(∃x)Fg(x)’, 
the instantiating term is ‘b’; in its role as a substitution instance of ‘(∃z)Fz’, 
‘g(b)’ is the instantiating term.

Here are the quantifi er rules, modifi ed as appropriate for the system PDE.

Universal Elimination (∀E)

 (∀x)P

� P(t/x)

Existential Introduction (∃I)

 P(t/x)

� (∃x)P

where t is a closed term

Existential Elimination (∃E)

 (∃x)P
  P(a/x)

  Q
� Q

provided that:
 (i)  a does not occur in an  open 

assumption.
 (ii)  a does not occur in (∃x)P.
 (iii) a does not occur in Q.

Universal Introduction (∀I )

 P(a/x)

� (∀x)P

provided that:
 (i)  a does not occur in an open 

assumption.
 (ii) a does not occur in (∀x)P.

where a is an individual constant.
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The defi nitions of the syntactic properties of sentences and sets of 
sentences in PDE (equivalence, validity, etc.) are all carried over from PD, sub-
stituting ‘PDE’ for ‘PD’ in each of the defi nitions.

In the rest of this section we will illustrate the use of the quantifi er 
rules, as modifi ed for PDE, by doing a series of derivations that establish various 
syntactic properties of sentences and sets of sentences of PLE.

ARGUMENTS

We begin by showing that the following argument is valid in PDE.

(∀x)(∀y)(Fx ⊃ Gxy)
(∃x)Ff(x)

(∃x)(∃y)Gxy

Derive: (∃x)(∃y)Gxy

 1 (∀x)(∀y)(Fx ⊃ Gxy) Assumption
 2 (∃x)Ff(x) Assumption

 3  Ff(a) A / ∃E

G  (∃x)(∃y)Gxy
G (∃x)(∃y)Gxy 2, 3–— ∃E

Derive: (∃x)(∃y)Gxy

 1 (∀x)(∀y)(Fx ⊃ Gxy) Assumption
 2 (∃x)Ff(x) Assumption

 3  Ff(a) A / ∃E

 4  (∀y)(Ff(a) ⊃ Gf(a)y) 1 ∀E
 5  Ff(a) ⊃ Gf(a)b 4 ∀E

G  (∃x)(∃y)Gxy
G (∃x)(∃y)Gxy 2, 3–— 3E

Since the second premise is an existentially quantifi ed sentence we will use 
Existential Elimination as our primary strategy:

Two applications of Universal Elimination produce a material conditional that 
has ‘Ff(a)’ as its antecedent:
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We can derive ‘Gf(a)b’ from lines 3 and 5 by Conditional Elimination, and 
then we can derive our current goal with two applications of Existential 
Introduction:

10.4 THE DERIVATION SYSTEM PDE  537

Both Universal Elimination and Existential Introduction allow the associated 
substitution instance to be formed from a closed complex term, as we have 
done here (the substitution instance on line 4 of the universally quantifi ed 
sentence on line 1 is formed using the complex term ‘f(a)’, as is the substitu-
tion instance on line 7 of the existentially quantifi ed sentence on line 8).

We next show that the following argument is valid in PDE:

Derive: (∃x)(∃y)Gxy

1 (∀x)(∀y)(Fx ⊃ Gxy) Assumption
2 (∃x)Ff(x) Assumption

3  Ff(a) A / ∃E

4  (∀y)(Ff(a) ⊃ Gf(a)y) 1 ∀E
5  Ff(a) ⊃ Gf(a)b 4 ∀E
6  Gf(a)b 3, 5 ⊃E
7  (∃y)Gf(a)y 6 ∃I
8  (∃x)(∃y)Gxy 7 ∃I
9 (∃x)(∃y)Gxy 2, 3–8 ∃E

We will proceed much as in the previous example, using Existential Elimination 
as our primary strategy. But this example also requires the use of Identity 
Elimination:

a � g(b)
(∀x)(Fxa ⊃ (∀y)Gyx)
(∃y)Fyg(b)

(∃x)(∀y)Gyx

At line 6 we replaced ‘g(b)’ in ‘Fcg(b)’ with ‘a’.

Derive: (∃x)(∀y)Gyx

1 a � g(b) Assumption
2 (∀x)(Fxa ⊃ (∀y)Gyx) Assumption
3 (∃y)Fyg(b) Assumption

4  Fcg(b)  A / ∃E

5  Fca ⊃ (∀y)Gyc 2 ∀E
6  Fca 1, 4 �E
7  (∀y)Gya 5, 6 ⊃E
8  (∃x)(∀y)Gyx 7 ∃I
9 (∃x)(∀y)Gyx 3, 4–8 ∃E
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THEOREMS

The sentence ‘(∀z)(∀y)(z � y ⊃ y � z)’ says of each pair of things that if the 
fi rst member of the pair is identical to the second, then the second is identical 
to the fi rst. Our derivation will end with two uses of Universal Introduction:

Derive: (∀z)(∀y)(z � y ⊃ y � z)

G b � c ⊃ c � b
G (∀y)(b � y ⊃ y � b) — ∀I
G (∀z)(∀y)(z � y ⊃ y � z) — ∀I

It is important that we use two different constants to form the goal at the third 
line from the bottom. If we had picked ‘b � b ⊃ b � b’ as our goal we would 
not be able to derive ‘(∀y)(b � y ⊃ y � b)’ by Universal Introduction, as the 
second restriction on that rule prohibits the instantiating term from occurring 
in the sentence that is derived by the rule. We will use Conditional Introduc-
tion to derive the goal ‘b � c ⊃ c � b’:

Derive: (∀z)(∀y)(z � y ⊃ y � z)

 1  b � c A / ⊃I

G  c � b
G b � c ⊃ c � b 1–— ⊃I
G (∀y)(b � y ⊃ y � b) — ∀I
G (∀z)(∀y)(z � y ⊃ y � z) — ∀I

We can fi nish the derivation by using Identity Introduction to derive ‘(∀y)y � y’ 
(or any other sentence of this form), then deriving either ‘b � b’ or ‘c � 
‘c’—it doesn’t matter which—by Universal Elimination and then using Identity 
Elimination to derive ‘c � b’:

Derive: (∀z)(∀y)(z � y ⊃ y � z)

1  b � c A / ⊃I

2  (∀y)y � y �I
3  c � c 2 ∀E
4  c � b 1, 3 �E
5 b � c ⊃ c � b 1–4 ⊃I
6 (∀y)(b � y ⊃ y � b) 5 ∀I
7 (∀z)(∀y)(z � y ⊃ y � z) 6 ∀I

Once we have ‘c � c’ at line 3 we can use Identity Elimination, replacing the 
second occurrence of ‘c’ in ‘c � c’ with ‘b’, based on the identity at line 1.
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The sentence ‘(∀x)(∀y)(∀z)[(x � f(z) & y � f(z)) ⊃ x � y]’ is also a 
theorem of PDE. We will work from the bottom up, anticipating three applica-
tions of Universal Introduction:

Our current goal is a material conditional, so we will try to obtain it by Condi-
tional Introduction, assuming ‘(a � f(c) & b � f(c))’ and deriving ‘a � b’. The 
latter can be derived using Conjunction Elimination and Identity Elimination:

Derive: (∀x)(∀y)(∀z)[(x � f(z) & y � f(z)) ⊃ x � y]

 1

G [(a � f(c) & b � f(c)) ⊃ a � b]
G (∀z)[(a � f(z) & b � f(z)) ⊃ a � b] — ∀I
G (∀y)(∀z)[(a � f(z) & y � f(z)) ⊃ a � y] — ∀I
G (∀x)(∀y)(∀z)[(x � f(z) & y � f(z)) ⊃ x � y] — ∀I

INCONSISTENCY

The set {(∀x)(Fx ∨ (∃y)Gxy), ~ Fg(a,b), g(a,b) � c, ~ (∃y)Gcy} is inconsistent 
in PDE. To show this we need to derive a sentence Q and its negation ~ Q. We 
will use ‘~ Fg(a,b)’ as ~ Q and we will use Disjunction Elimination as our pri-
mary strategy:

1  (a � f(c) & b � f(c)) A/ ⊃ I

2  a � f(c) 1 &E
3  b � f(c) 1 &E
4  a � b 2, 3 �E
5 [(a � f(c) & b � f(c)) ⊃ a � b] 1–4 ⊃E
6 (∀z)[(a � f(z) & b � f(z)) ⊃ a � b] 5 ∀I
7 (∀y)(∀z)[(a � f(z) & y � f(z)) ⊃ a � y] 6 ∀I
8 (∀x)(∀y)(∀z)[(x � f(z) & y � f(z)) ⊃ x � y] 7 ∀I

Derive: Fg(a,b), ~ Fg(a,b)

1 (∀x)(Fx ∨ (∃y)Gxy) Assumption
2 ~ Fg(a,b) Assumption
3 g(a,b) � c Assumption
4 ~ (∃y)Gcy Assumption

5 Fc ∨ (∃y)Gcy 1 ∀E
6  Fc  A / ∨E

7  Fg(a,b) 3, 6 �E

8  (∃y)Gcy A / ∨E

G  Fg(a,b)
G Fg(a,b) 5, 6–7, 8–— ∨E
 ~ Fg(a,b) 2 R
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540  PREDICATE LOGIC: DERIVATIONS

Our remaining task is to derive ‘Fg(a,b)’. Doing so is not diffi cult because both 
‘~ (∃y)Gcy’ and ‘(∃y)Gcy’ are available to us, at lines 4 and 8, respectively. So 
we will use Negation Elimination to complete the derivation:

Derive: Fg(a,b), ~ Fg(a,b)

 1 (∀y)(Fx ∨ (∃y)Gxy) Assumption
 2 ~ Fg(a,b)    Assumption
 3 g(a,b) � c    Assumption
 4 ~ (∃y)Gcy    Assumption

 5 Fc ∨ (∃y)Gcy   1 ∀E
 6  Fc      A / ∨E

 7  Fg(a,b)    3, 6 �E

 8  (∃y)Gcy    A / ∨E

 9   ~ Fg(a,b)  A / ~ E

10   (∃y)Gcy   8 R
11   ~ (∃y)Gcy  4 R
12  Fg(a,b)    9–11 ~ E
13 Fg(a,b)     5, 6–7, 8–12 ∨E
14 ~ Fg(a,b)    2 R

There is an important difference between PD� and our latest system, 
PDE. Although both are extensions of PD in the sense that each adds new rules 
to PD, PD� is not stronger than PD. Everything derivable in PD� is derivable 
in PD. However, PDE, with two new identity rules and modifi cations of two of 
PD’s quantifi er rules, allows us to derive results in PDE that are not derivable 
in PD. The previous examples in this section involving the identity predicate 
and complex terms illustrate this.

However, it should be clear that we can augment the rules of PDE with 
the additional rules of PD� to form a derivation system PDE� that is equivalent 
to PDE. Here is a short derivation in PDE�:

Derive: ~ (∃x)f(x) � x

1 (∀x)(∀y)(f(x) � y ⊃ ~ f(y) � x) Assumption

2  f(a) � a A / ~ I

3  (∀y)(f(a) � y ⊃ ~ f(y) � a) 1 ∀E
4  f(a) � a ⊃ ~ f(a) � a) 3 ∀E
5  ~ f(a) � a 2, 4 ⊃E
6  f(a) � a 2 R
7 ~ f(a) � a 2–6 ~ I
8 (∀x) ~ f(x) � x 7 ∀I
9 ~ (∃x)f(x) � x 8 QN
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 10.4E EXERCISES

 1. Show that each of the following is a theorem in PDE.
 a. a � b ⊃ b � a
 *b. (a � b & b � c) ⊃ a � c
 c. (~ a � b & b � c) ⊃ ~ a � c
 *d. ~ a � b � ~ b � a
 e. ~ a � c ⊃ (~ a � b ∨ ~ b � c)

 2. Show that each of the following is valid in PDE.

 a. a � b & ~ Bab

  ~ (∀x)Bxx

 *b. Ge ⊃ d � e

  Ge ⊃ He

  Ge ⊃ Hd

 c. (∀z)[Gz ⊃ (∀y)(Ky ⊃ Hzy)]

  (Ki & Gj) & i � j

  Hii

 *d. (∃x)(Hx & Mx)

  Ms & ~ Hs

  (∃x)[(Hx & Mx) & ~ x � s]

 e. a � b

  Ka ∨ ~ Kb

 3. Show that each of the following is a theorem in PDE.
 a. (∀x)(x � x ∨ ~ x � x)
 *b. (∀x)(∀y)(x � x & y � y)
 c. (∀x)(∀y)(x � y � y � x)
 *d. (∀x)(∀y)(∀z)[(x � y & y � z) ⊃ x � z]
 e. ~ (∃x) ~ x � x

 4. Symbolize each of the following arguments in PLE and show that each argu-
ment is valid in PDE.

 a. The number 2 is not identical to 4. The numbers 2 and 4 are both even num-
bers. Therefore there are at least two different even numbers.

 *b. Hyde killed some innocent person. But Jekyll is Hyde. Jekyll is a doctor. Hence 
some doctor killed some innocent person.

 c. Shakespeare didn’t admire himself, but the queen admired Bacon. Thus 
Shakespeare isn’t Bacon since Bacon admired everybody who was admired by 
somebody.

 *d. Rebecca loves those and only those who love her. The brother of Charlie loves 
Rebecca. Sam is Charlie’s brother. So Sam and Rebecca love each other.
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542  PREDICATE LOGIC: DERIVATIONS

 e. Somebody robbed Peter and paid Paul. Peter didn’t rob himself. Paul didn’t pay 
himself. Therefore the person who robbed Peter and paid Paul was neither Peter 
nor Paul.

 5. Which of the following illustrate mistakes in PDE? Explain what each mistake is.

 a. 1 (∃x)Sx Assumption

 2  Sg(f) A / ∃E

 3  (∃x)Sg(x) 2 ∃I
 4 (∃x)Sg(x) 1, 2–3 ∃E

 *b. 1 (∃x)Sg(x,x) Assumption

 2  Sg(i,i) A / ∃E

 3  (∃x)Sg(i,x) 2 ∃I
 4 (∃x)Sg(i,x) 1, 2–3 ∃E

 c. 1 (∃x)Hxg(x) Assumption

 2  Heg(e) A / ∃E

 3  (∃y)Hyg(y) 2 ∃I
 4 (∃y)Hyg(y) 1, 2–3 ∃E

 *d. 1 (∀x)Rf(x) Assumption

 2 Rf(a) 1 ∀E
 3 (∀z)Rf(z) 2 ∀I

 e. 1 (∀x)Lxxx Assumption

 2 Lf(a,a)a 1 ∀E
 3 (∀x)Lf(x,x)x 2 ∀I

 *f. 1 (∀x)Mx Assumption

 2 Mf(f(a)) 1 ∀E
 3 (∃x)Mf(x) 2 ∃I

 g. 1 (∀x)Rf(x,x) Assumption

 2 Rf(c,c) 1 ∀E
 3 (∀y)Ry 2 ∀I

 *h. 1 (∀x)Jx Assumption

 2 Jf(f(a)) 1 ∀E
 3 (∃y)Jf(f(y)) 2 ∃I
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 6. Show that each of the following is a theorem in PDE.
 a. (∀x)(∃y)f(x) � y
 *b. (∀x)(∀y)(∀z)[(f(x) � g(x,y) & g(x,y) � h(x,y,z)) ⊃ f(x) � h(x,y,z)]
 c. (∀x)Ff(x) ⊃ (∀x)Ff(g(x))
 *d. (∀x)[~ f(x) � x ⊃ (∀y)(f(x) � y ⊃ ~ x � y)]
 e. (∀x)(f(f(x)) � x ⊃ f(f(f(f(x)))) � x)
 *f. (∀x)(∀y)(∀z)[(f(g(x)) � y & f(y) � z) ⊃ f(f(g(x))) � z]
 g. (∀x)(∀y)[(f(x) � y & f(y) � x) ⊃ x � f(f(x))]

 7. Show that each of the following is valid in PDE.

 a. (∀x)(Bx ⊃ Gxf(x))

  (∀x)Bf(x)

  (∀x)Gf(x)f(f(x))

 *b. (∀x)(Kx ∨ Hg(x))

  (∀x)(Kg(x) ∨ Hg(g(x)))

 c. (∀x)(∀y)(f(x) � y ⊃ Myxc)

  ~ Mbac & ~ Mabc

  ~ f(a) � b

 *d. ~ (∃x)Rx

  (∀x) ~ Rf(x,g(x))

 e. (∃x)(∀y)(∀z)Lxyz

  (∃x)Lxf(x)g(x)

 *f. (∀x)[~ Lxf(x) ∨ (∃y)Ng(y)]

  (∃x)Lf(x)f(f(x)) ⊃ (∃x)Ng(y)

 g. (∀x)[Zx ⊃ (∀y)(~ Dxy � Hf(f(y)))]

  (∀x)(Zx & ~ Hx)

  (∀x)Df(x)f(x)

 *h. (∀x)(∀y)(∃z)Sf(x)yz

  (∀x)(∀y)(∀z)(Sxyz ⊃ ~ (Cxyz ∨ Mzyx))

  (∃x)(∃y) ~ (∀z)Mzg(y)f(g(x))

 i. 1 (∀x)Jx Assumption

 2 Jf(g(a,b)) 1 ∀E
 3 (∃x)Jf(g(x,b)) 2 ∃I

 *j. 1 (∀x)Lx Assumption

 2 Lf(a,a) 1 ∀E
 3 (∀x)Lf(a,x) 2 ∀I
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544  PREDICATE LOGIC: DERIVATIONS

GLOSSARY2

DERIVABILITY IN PD: A sentence P of PL is derivable in PD from a set � of sentences 
of PL if and only if there is a derivation in PD in which all the primary assump-
tions are members of � and P occurs within the scope of only those assumptions.

VALIDITY IN PD: An argument of PL is valid in PD if and only if the conclusion of 
the argument is derivable in PD from the set consisting of the premises. An argu-
ment of PL is invalid in PD if and only if it is not valid in PD.

THEOREM IN PD: A sentence P of PL is a theorem in PD if and only if P is derivable 
in PD from the empty set.

EQUIVALENCE IN PD: Sentences P and Q of PL are equivalent in PD if and only if Q 
is derivable in PD from {P} and P is derivable in PD from {Q}.

INCONSISTENCY IN PD: A set � of sentences of PL is inconsistent in PD if and only 
if there is a sentence P of PL such that both P and ~ P are derivable in PD from 
�. A set � of sentences of PL is consistent in PD if and only if it is not inconsist-
ent in PD.

2Similar defi nitions hold for the derivation systems PD�, PDE, and PDE�.
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